Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609.
Department of Biology, Brandeis University, Waltham, MA 02454.
Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e2401816121. doi: 10.1073/pnas.2401816121. Epub 2024 Aug 6.
Many cytoskeletal networks consist of individual filaments that are organized into elaborate higher-order structures. While it is appreciated that the size and architecture of these networks are critical for their biological functions, much of the work investigating control over their assembly has focused on mechanisms that regulate the turnover of individual filaments through size-dependent feedback. Here, we propose a very different, feedback-independent mechanism to explain how yeast cells control the length of their actin cables. Our findings, supported by quantitative cell imaging and mathematical modeling, indicate that actin cable length control is an emergent property that arises from the cross-linked and bundled organization of the filaments within the cable. Using this model, we further dissect the mechanisms that allow cables to grow longer in larger cells and propose that cell length-dependent tuning of formin activity allows cells to scale cable length with cell length. This mechanism is a significant departure from prior models of cytoskeletal filament length control and presents a different paradigm to consider how cells control the size, shape, and dynamics of higher-order cytoskeletal structures.
许多细胞骨架网络由单独的纤维组成,这些纤维组织成精细的高级结构。虽然这些网络的大小和结构对于它们的生物学功能至关重要,但许多研究其组装控制的工作都集中在通过尺寸相关反馈来调节单个纤维周转率的机制上。在这里,我们提出了一种非常不同的、不依赖反馈的机制来解释酵母细胞如何控制其肌动蛋白电缆的长度。我们的研究结果得到了定量细胞成像和数学建模的支持,表明肌动蛋白电缆长度控制是一种从电缆内纤维的交联和捆绑组织中产生的涌现特性。使用这个模型,我们进一步剖析了允许电缆在更大的细胞中生长更长的机制,并提出了细胞长度依赖性的形成蛋白活性调节允许细胞随着细胞长度的增加而调节电缆长度。这种机制与以前的细胞骨架纤维长度控制模型有很大的不同,为我们提供了一个不同的范例来考虑细胞如何控制高级细胞骨架结构的大小、形状和动态。