Suppr超能文献

CsSnI3:半导体还是金属?单一材料兼具高导电性和强近红外光致发光。空穴迁移率高,存在相变。

CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions.

机构信息

Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.

出版信息

J Am Chem Soc. 2012 May 23;134(20):8579-87. doi: 10.1021/ja301539s. Epub 2012 May 11.

Abstract

CsSnI(3) is an unusual perovskite that undergoes complex displacive and reconstructive phase transitions and exhibits near-infrared emission at room temperature. Experimental and theoretical studies of CsSnI(3) have been limited by the lack of detailed crystal structure characterization and chemical instability. Here we describe the synthesis of pure polymorphic crystals, the preparation of large crack-/bubble-free ingots, the refined single-crystal structures, and temperature-dependent charge transport and optical properties of CsSnI(3), coupled with ab initio first-principles density functional theory (DFT) calculations. In situ temperature-dependent single-crystal and synchrotron powder X-ray diffraction studies reveal the origin of polymorphous phase transitions of CsSnI(3). The black orthorhombic form of CsSnI(3) demonstrates one of the largest volumetric thermal expansion coefficients for inorganic solids. Electrical conductivity, Hall effect, and thermopower measurements on it show p-type metallic behavior with low carrier density, despite the optical band gap of 1.3 eV. Hall effect measurements of the black orthorhombic perovskite phase of CsSnI(3) indicate that it is a p-type direct band gap semiconductor with carrier concentration at room temperature of ∼ 10(17) cm(-3) and a hole mobility of ∼585 cm(2) V(-1) s(-1). The hole mobility is one of the highest observed among p-type semiconductors with comparable band gaps. Its powders exhibit a strong room-temperature near-IR emission spectrum at 950 nm. Remarkably, the values of the electrical conductivity and photoluminescence intensity increase with heat treatment. The DFT calculations show that the screened-exchange local density approximation-derived band gap agrees well with the experimentally measured band gap. Calculations of the formation energy of defects strongly suggest that the electrical and light emission properties possibly result from Sn defects in the crystal structure, which arise intrinsically. Thus, although stoichiometric CsSnI(3) is a semiconductor, the material is prone to intrinsic defects associated with Sn vacancies. This creates highly mobile holes which cause the materials to appear metallic.

摘要

CsSnI(3) 是一种不寻常的钙钛矿,经历复杂的位移和重构相转变,并在室温下表现出近红外发射。CsSnI(3) 的实验和理论研究受到缺乏详细晶体结构表征和化学不稳定性的限制。在这里,我们描述了纯多晶型晶体的合成、大无裂纹/无气泡锭的制备、单晶结构的精细结构、以及 CsSnI(3) 的温度依赖性电荷输运和光学性质,同时结合了从头算第一性原理密度泛函理论 (DFT) 计算。原位温度依赖性单晶和同步加速器粉末 X 射线衍射研究揭示了 CsSnI(3) 多晶型相变的起源。CsSnI(3) 的黑色正交形式表现出无机固体中最大的体积热膨胀系数之一。对其进行的电导率、霍尔效应和热功率测量表明,尽管光学带隙为 1.3 eV,但它表现出低载流子密度的 p 型金属行为。对 CsSnI(3) 的黑色正交钙钛矿相的霍尔效应测量表明,它是一种 p 型直接带隙半导体,室温下的载流子浓度约为 10(17) cm(-3),空穴迁移率约为 585 cm(2) V(-1) s(-1)。空穴迁移率是具有可比带隙的 p 型半导体中观察到的最高值之一。其粉末在 950nm 处表现出强室温近红外发射光谱。值得注意的是,电导率和光致发光强度值随着热处理而增加。DFT 计算表明,屏蔽交换局域密度近似导出的能带隙与实验测量的能带隙吻合良好。缺陷形成能的计算强烈表明,电导率和光致发光强度的性质可能源于晶体结构中的 Sn 缺陷,这些缺陷本质上存在。因此,尽管化学计量的 CsSnI(3) 是一种半导体,但该材料容易受到与 Sn 空位相关的固有缺陷的影响。这产生了高度迁移的空穴,使材料呈现出金属性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验