Synchromedia laboratory, École de technologie supérieure, Montréal, Québec, Canada H3C 1K3.
Magn Reson Imaging. 2011 Feb;29(2):243-59. doi: 10.1016/j.mri.2010.08.007. Epub 2010 Oct 15.
Real-world magnetic resonance imaging of the brain is affected by intensity nonuniformity (INU) phenomena which makes it difficult to fully automate the segmentation process. This difficult task is accomplished in this work by using a new method with two original features: (1) each brain tissue class is locally modeled using a local linear region representative, which allows us to account for the INU in an implicit way and to more accurately position the region's boundaries; and (2) the region models are embedded in the level set framework, so that the spatial coherence of the segmentation can be controlled in a natural way. Our new method has been tested on the ground-truthed Internet Brain Segmentation Repository (IBSR) database and gave promising results, with Tanimoto indexes ranging from 0.61 to 0.79 for the classification of the white matter and from 0.72 to 0.84 for the gray matter. To our knowledge, this is the first time a region-based level set model has been used to perform the segmentation of real-world MRI brain scans with convincing results.
真实世界的大脑磁共振成像受到强度不均匀性(INU)现象的影响,这使得完全自动化分割过程变得困难。在这项工作中,我们使用了一种具有两个原创功能的新方法来完成这项艰巨的任务:(1)使用局部线性区域代表对每个脑组织类别进行局部建模,这使我们能够以隐式方式考虑 INU,并更准确地定位区域边界;(2)区域模型被嵌入到水平集框架中,因此可以以自然的方式控制分割的空间一致性。我们的新方法已经在有真实数据的互联网脑分割库(IBSR)数据库上进行了测试,结果令人鼓舞,对于白质的分类,Tanimoto 指数范围为 0.61 到 0.79,对于灰质的分类,Tanimoto 指数范围为 0.72 到 0.84。据我们所知,这是第一次使用基于区域的水平集模型对真实世界的 MRI 大脑扫描进行分割,并取得了令人信服的结果。