Harvard-MIT Division of Health, Science, and Technology, Cambridge, MA 02139, USA.
Lab Chip. 2012 Jun 21;12(12):2265-76. doi: 10.1039/c2lc21105j. Epub 2012 May 17.
Protein micropatterning is a powerful tool for studying the effects of extracellular signals on cell development and regeneration. Laser micropatterning of proteins is the most flexible method for patterning many different geometries, protein densities, and concentration gradients. Despite these advantages, laser micropatterning remains prohibitively slow for most applications. Here, we take advantage of the rapid multi-photon induced photobleaching of fluorophores to generate sub-micron resolution patterns of full-length proteins on polymer monolayers, with sub-microsecond exposure times, i.e. one to five orders of magnitude faster than all previous laser micropatterning methods. We screened a range of different PEG monolayer coupling chemistries, chain-lengths and functional caps, and found that long-chain acrylated PEG monolayers are effective at resisting non-specific protein adhesion, while permitting efficient cross-linking of biotin-4-fluorescein to the PEG monolayers upon exposure to femtosecond laser pulses. We find evidence that the dominant photopatterning chemistry switches from a two-photon process to three- and four-photon absorption processes as the laser intensity increases, generating increasingly volatile excited triplet-state fluorophores, leading to faster patterning. Using this technology, we were able to generate over a hundred thousand protein patterns with varying geometries and protein densities to direct the polarization of hippocampal neurons with single-cell precision. We found that certain arrays of patterned triangles as small as neurite growth cones can direct polarization by impeding the elongation of reverse-projecting neurites, while permitting elongation of forward-projecting neurites. The ability to rapidly generate and screen such protein micropatterns can enable discovery of conditions necessary to create in vitro neural networks with single-neuron precision for basic discovery, drug screening, as well as for tissue scaffolding in therapeutics.
蛋白质微图案化是研究细胞发育和再生过程中细胞外信号作用的有力工具。激光微图案化是用于制作不同几何形状、蛋白质密度和浓度梯度的最灵活的方法。尽管有这些优点,但激光微图案化在大多数应用中仍然过于缓慢。在这里,我们利用荧光团的快速多光子诱导光漂白来在聚合物单层上生成全长蛋白质的亚微米分辨率图案,曝光时间为亚微秒,即比以前所有的激光微图案化方法快一个到五个数量级。我们筛选了一系列不同的 PEG 单层偶联化学、链长和功能帽,发现长链丙烯酰化 PEG 单层有效地抵抗非特异性蛋白质粘附,同时允许生物素-4-荧光素在飞秒激光脉冲照射下有效地交联到 PEG 单层上。我们有证据表明,随着激光强度的增加,主导光图案化化学从双光子过程转变为三光子和四光子吸收过程,从而产生越来越不稳定的激发三重态荧光团,导致更快的图案化。使用这项技术,我们能够生成超过十万个具有不同几何形状和蛋白质密度的蛋白质图案,以单神经元精度引导海马神经元的极化。我们发现,某些小至神经突生长锥的图案化三角形阵列可以通过阻碍反向投射神经突的伸长来引导极化,同时允许正向投射神经突的伸长。快速生成和筛选这种蛋白质微图案的能力可以为创建具有单神经元精度的体外神经网络提供必要的条件,用于基础发现、药物筛选以及治疗中的组织支架。