Suppr超能文献

哺乳动物光感受器视紫红质的光转导分子生物学

Molecular biology of light transduction by the Mammalian photoreceptor, rhodopsin.

作者信息

Khorana H G

机构信息

a Departments of Biology and Chemistry, Bldg. 68-680 , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , MA , 02139.

出版信息

J Biomol Struct Dyn. 2000;17 Suppl 1:1-16. doi: 10.1080/07391102.2000.10506598.

Abstract

Abstract Rhodopsin, the vertebrate photoreceptor, is a prototypic molecule in the largest family of G- protein coupled receptors (GPCR). Like all receptors of this family, it contains three distinct domains: the cytoplasmic (intracellular) domain that is involved in all the protein-protein interactions; the transmembrane (TM) domain where the signal transduction begins, by light- catalysed isomerization of 11-cis-retinal to all trans-retinal, and the intradiscal domain which appears to be involved in a specific tertiary structure. The main focus of this talk is to describe efforts to understand specific structure and function in each domain. The main findings to be presented are as follows: 1. Intradiscal domain contains a globular tertiary structure. A central feature is a disulfide bond (Cys110-Cys187) which is conserved in most of the known GPCR. 2. The correct folding in vivo requires the formation of the above disulfide bond. Misfolding resulting in non-retinal binding is frequently caused by Retinitis Pigmentosa (RP) point mutations in the intradiscal and the TM domain. 3. In vivo folding studies, using RP mutations in every one of the seven helices, have shown that the packing of the helices in the TM domain and folding to form the intradiscal tertiary structure are coupled. 4. Cysteine mutagenesis has been used systematically to study the tertiary structure and light-dependent changes throughout the cytoplasmic face by combination of biochemical and biophysical studies. In particular, EPR spectroscopy following spin labeling of selected double cysteine mutants has shown movements in helices, including tilting, following retinal isomerization. 5. Large scale expression of mutants has allowed application of both (19)F-NMR (solution) and MAS solid state NMR (in collaboration with Dr. Steve Smith's group, SUNY, Stony Brook). Results of current work are promising for detailed study of the conformational change. Finally, a unifying hypothesis, which is termed the central dogma in the GPCR field, will be proposed. This states that despite the enormous variation in "accessory" structural details, the principal mechanism of signal transduction starting with pertubation in the seven helical bundle is fundamentally the same in all GPCRs. Experiments to test helix movements, the first step in signal transduction following ligand binding in two adrenergic receptors are now feasible. The patterns of helix movements in them will be compared with the pattern demonstrated for rhodopsin and its mutants.

摘要

摘要 视紫红质作为脊椎动物的光感受器,是G蛋白偶联受体(GPCR)大家族中的一个典型分子。与该家族的所有受体一样,它包含三个不同的结构域:参与所有蛋白质 - 蛋白质相互作用的胞质(细胞内)结构域;信号转导起始的跨膜(TM)结构域,通过11 - 顺式视黄醛光催化异构化为全反式视黄醛;以及似乎参与特定三级结构的盘内结构域。本次讲座的主要重点是描述理解每个结构域特定结构和功能的研究工作。将展示的主要研究结果如下:1. 盘内结构域包含一个球状三级结构。一个核心特征是一个二硫键(Cys110 - Cys187),在大多数已知的GPCR中是保守的。2. 体内的正确折叠需要形成上述二硫键。盘内和TM结构域中的视网膜色素变性(RP)点突变经常导致错误折叠,从而导致非视黄醛结合。3. 使用七个螺旋中每一个的RP突变进行的体内折叠研究表明,TM结构域中螺旋的堆积以及折叠形成盘内三级结构是相互关联的。4. 已经系统地使用半胱氨酸诱变,通过生物化学和生物物理研究相结合的方法,研究整个胞质面的三级结构和光依赖性变化。特别是,对选定的双半胱氨酸突变体进行自旋标记后的电子顺磁共振光谱显示,视黄醛异构化后螺旋会发生移动,包括倾斜。5. 突变体的大规模表达使得能够应用(19)F - NMR(溶液)和MAS固态NMR(与纽约州立大学石溪分校的Steve Smith博士团队合作)。当前工作的结果对于详细研究构象变化很有前景。最后,将提出一个统一的假说,在GPCR领域中被称为中心法则。该假说指出,尽管“辅助”结构细节存在巨大差异,但在所有GPCR中,从七螺旋束中的扰动开始的信号转导主要机制基本相同。现在可以进行实验来测试螺旋移动,这是两个肾上腺素能受体中配体结合后信号转导的第一步。将比较它们中螺旋移动的模式与视紫红质及其突变体所展示出的模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验