Suppr超能文献

数据融合下的有效估计

Efficient Estimation under Data Fusion.

作者信息

Li Sijia, Luedtke Alex

机构信息

Department of Biostatistics, University of Washington, Seattle, Washington 98195.

Department of Statistics, University of Washington, Box 354322, Seattle, Washington 98195.

出版信息

Biometrika. 2023 Dec;110(4):1041-1054. doi: 10.1093/biomet/asad007. Epub 2023 Feb 6.

Abstract

We aim to make inferences about a smooth, finite-dimensional parameter by fusing data from multiple sources together. Previous works have studied the estimation of a variety of parameters in similar data fusion settings, including in the estimation of the average treatment effect and average reward under a policy, with the majority of them merging one historical data source with covariates, actions, and rewards and one data source of the same covariates. In this work, we consider the general case where one or more data sources align with each part of the distribution of the target population, for example, the conditional distribution of the reward given actions and covariates. We describe potential gains in efficiency that can arise from fusing these data sources together in a single analysis, which we characterize by a reduction in the semiparametric efficiency bound. We also provide a general means to construct estimators that achieve these bounds. In numerical simulations, we illustrate marked improvements in efficiency from using our proposed estimators rather than their natural alternatives. Finally, we illustrate the magnitude of efficiency gains that can be realized in vaccine immunogenicity studies by fusing data from two HIV vaccine trials.

摘要

我们旨在通过融合来自多个来源的数据,对一个平滑的有限维参数进行推断。以往的研究在类似的数据融合设置中,对各种参数的估计进行了探讨,包括在政策下平均治疗效果和平均奖励的估计,其中大多数研究将一个历史数据源与协变量、行动和奖励以及一个具有相同协变量的数据源合并。在这项工作中,我们考虑一般情况,即一个或多个数据源与目标人群分布的每个部分对齐,例如,给定行动和协变量的奖励的条件分布。我们描述了在单一分析中融合这些数据源可能带来的效率提升,我们通过半参数效率界的降低来刻画这一点。我们还提供了一种构建达到这些界的估计量的通用方法。在数值模拟中,我们说明了使用我们提出的估计量而不是其自然替代方法在效率上的显著提高。最后,我们通过融合来自两项HIV疫苗试验的数据,说明了在疫苗免疫原性研究中可以实现的效率提升幅度。

相似文献

1
Efficient Estimation under Data Fusion.数据融合下的有效估计
Biometrika. 2023 Dec;110(4):1041-1054. doi: 10.1093/biomet/asad007. Epub 2023 Feb 6.

本文引用的文献

3
Learning Optimal Distributionally Robust Individualized Treatment Rules.学习最优分布鲁棒个体化治疗规则。
J Am Stat Assoc. 2021;116(534):659-674. doi: 10.1080/01621459.2020.1796359. Epub 2020 Sep 15.
5
Extending inferences from a randomized trial to a target population.将随机试验的推论扩展至目标人群。
Eur J Epidemiol. 2019 Aug;34(8):719-722. doi: 10.1007/s10654-019-00533-2. Epub 2019 Jun 19.
6
An omnibus non-parametric test of equality in distribution for unknown functions.针对未知函数分布相等性的综合非参数检验。
J R Stat Soc Series B Stat Methodol. 2019 Feb;81(1):75-99. doi: 10.1111/rssb.12299. Epub 2018 Nov 2.
7
Robust estimation of encouragement-design intervention effects transported across sites.跨站点传递的鼓励设计干预效果的稳健估计。
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1509-1525. doi: 10.1111/rssb.12213. Epub 2016 Oct 31.
9
Causal inference and the data-fusion problem.因果推断与数据融合问题。
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7345-52. doi: 10.1073/pnas.1510507113.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验