Institute of Experimental Botany, v. v. i., Academy of Sciences of the Czech Republic Prague, Czech Republic.
Front Plant Sci. 2012 Mar 19;3:54. doi: 10.3389/fpls.2012.00054. eCollection 2012.
Phosphatidic acid (PA) is an important intermediate in membrane lipid metabolism that acts as a key component of signaling networks, regulating the spatio-temporal dynamics of the endomembrane system and the cytoskeleton. Using tobacco pollen tubes as a model, we addressed the signaling effects of PA by probing the functions of three most relevant enzymes that regulate the production and degradation of PA, namely, phospholipases D (PLD), diacylglycerol kinases (DGKs), and lipid phosphate phosphatases (LPPs). Phylogenetic analysis indicated a highly dynamic evolution of all three lipid-modifying enzymes in land plants, with many clade-specific duplications or losses and massive diversification of the C2-PLD family. In silico transcriptomic survey revealed increased levels of expression of all three PA-regulatory genes in pollen development (particularly the DGKs). Using specific inhibitors we were able to distinguish the contributions of PLDs, DGKs, and LPPs into PA-regulated processes. Thus, suppressing PA production by inhibiting either PLD or DGK activity compromised membrane trafficking except early endocytosis, disrupted tip-localized deposition of cell wall material, especially pectins, and inhibited pollen tube growth. Conversely, suppressing PA degradation by inhibiting LPP activity using any of three different inhibitors significantly stimulated pollen tube growth, and similar effect was achieved by suppressing the expression of tobacco pollen LPP4 using antisense knock-down. Interestingly, inhibiting specifically DGK changed vacuolar dynamics and the morphology of pollen tubes, whereas inhibiting specifically PLD disrupted the actin cytoskeleton. Overall, our results demonstrate the critical importance of all three types of enzymes involved in PA production and degradation, with strikingly different roles of PA produced by the PLD and DGK pathways, in pollen tube growth.
磷脂酸(PA)是膜脂代谢中的重要中间产物,作为信号网络的关键组成部分,调节内质网系统和细胞骨架的时空动态。我们使用烟草花粉管作为模型,通过探测三种最相关的酶(调节 PA 产生和降解的磷脂酶 D(PLD)、二酰基甘油激酶(DGK)和脂质磷酸磷酸酶(LPP))的功能来研究 PA 的信号作用。系统发育分析表明,所有三种脂质修饰酶在陆地植物中都经历了高度动态的进化,许多分支特异性的重复或丢失,以及 C2-PLD 家族的大规模多样化。基于计算机的转录组调查显示,在花粉发育过程中,所有三种 PA 调节基因的表达水平都增加(特别是 DGK)。使用特异性抑制剂,我们能够区分 PLD、DGK 和 LPP 对 PA 调节过程的贡献。因此,通过抑制 PLD 或 DGK 活性抑制 PA 的产生会损害膜转运,除早期内吞作用外,还会破坏细胞壁物质(特别是果胶)在顶端的沉积,并抑制花粉管生长。相反,通过使用三种不同抑制剂中的任何一种抑制 LPP 活性来抑制 PA 的降解,会显著刺激花粉管生长,而使用反义敲低抑制烟草花粉 LPP4 的表达也能达到类似的效果。有趣的是,特异性抑制 DGK 会改变液泡动力学和花粉管的形态,而特异性抑制 PLD 会破坏肌动蛋白细胞骨架。总的来说,我们的研究结果表明,参与 PA 产生和降解的三种酶都非常重要,PLD 和 DGK 途径产生的 PA 具有显著不同的作用,在花粉管生长中起着关键作用。