Zhang Liyuan, Sheng Yongxin, Yang Jinxiang, Hu Zuhai, Peng Bin
School of Public Health, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
Sci Rep. 2024 Dec 28;14(1):31503. doi: 10.1038/s41598-024-82981-9.
The study aims to address the critical issue of toxic side effects resulting from drug combinations, which can significantly increase health risks, clinical complications, and lead to drug being withdrawn from the market. A model named TSEDDI (toxic side effects of drug-drug interaction) has been developed to improve the identification of drug pairs that may induce toxicity or adverse reactions. By utilizing drug chemical structures and diverse proteins, we employ a convolutional neural network (CNN) to extract features from molecular images, enzyme proteins, transporter proteins, and target proteins. Furthermore, we introduce a weighted binary cross entropy loss function to tackle class imbalance and integrate the multi-head attention mechanism with residual connections to enhance model performance. Our model outperformed advanced baseline models in predicting drug-drug interaction (DDI) side effects, achieving an accuracy of 0.9059 (± 0.0010) and consistently excelling across various evaluation metrics. The case study confirms the potential mechanisms by which four pairs of drugs cause side effects, thus demonstrating the effectiveness of our model in predicting DDI side effects. The TSEDDI model combines multiple attention mechanisms and residual connections, enhancing its ability to detect toxic and adverse effects related to DDIs. As a result, it becomes a valuable resource for promptly identifying adverse reactions in clinical trials. Future research could investigate drug substructures prone to toxic side effects.
该研究旨在解决药物组合产生的毒副作用这一关键问题,药物组合的毒副作用会显著增加健康风险、引发临床并发症,并导致药物被撤出市场。已开发出一种名为TSEDDI(药物-药物相互作用的毒副作用)的模型,以改进对可能诱发毒性或不良反应的药物对的识别。通过利用药物化学结构和多种蛋白质,我们使用卷积神经网络(CNN)从分子图像、酶蛋白、转运蛋白和靶蛋白中提取特征。此外,我们引入加权二元交叉熵损失函数来解决类别不平衡问题,并将多头注意力机制与残差连接相结合以提高模型性能。我们的模型在预测药物-药物相互作用(DDI)副作用方面优于先进的基线模型,准确率达到0.9059(± 0.0010),并且在各种评估指标上始终表现出色。案例研究证实了四对药物产生副作用的潜在机制,从而证明了我们的模型在预测DDI副作用方面的有效性。TSEDDI模型结合了多种注意力机制和残差连接,增强了其检测与DDI相关的毒性和不良反应的能力。因此,它成为在临床试验中快速识别不良反应的宝贵资源。未来的研究可以调查容易产生毒副作用的药物子结构。