Suppr超能文献

测量癫痫发作时脑动力学的重置:全局优化和空间同步技术的应用。

Measuring resetting of brain dynamics at epileptic seizures: application of global optimization and spatial synchronization techniques.

作者信息

Sabesan Shivkumar, Chakravarthy Niranjan, Tsakalis Kostas, Pardalos Panos, Iasemidis Leon

机构信息

Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287, USA.

出版信息

J Comb Optim. 2009 Jan;17(1):74-97. doi: 10.1007/s10878-008-9181-x.

Abstract

Epileptic seizures are manifestations of intermittent spatiotemporal transitions of the human brain from chaos to order. Measures of chaos, namely maximum Lyapunov exponents (STL(max)), from dynamical analysis of the electroencephalograms (EEGs) at critical sites of the epileptic brain, progressively converge (diverge) before (after) epileptic seizures, a phenomenon that has been called dynamical synchronization (desynchronization). This dynamical synchronization/desynchronization has already constituted the basis for the design and development of systems for long-term (tens of minutes), on-line, prospective prediction of epileptic seizures. Also, the criterion for the changes in the time constants of the observed synchronization/desynchronization at seizure points has been used to show resetting of the epileptic brain in patients with temporal lobe epilepsy (TLE), a phenomenon that implicates a possible homeostatic role for the seizures themselves to restore normal brain activity. In this paper, we introduce a new criterion to measure this resetting that utilizes changes in the level of observed synchronization/desynchronization. We compare this criterion's sensitivity of resetting with the old one based on the time constants of the observed synchronization/desynchronization. Next, we test the robustness of the resetting phenomena in terms of the utilized measures of EEG dynamics by a comparative study involving STL(max), a measure of phase (ϕ(max)) and a measure of energy (E) using both criteria (i.e. the level and time constants of the observed synchronization/desynchronization). The measures are estimated from intracranial electroencephalographic (iEEG) recordings with subdural and depth electrodes from two patients with focal temporal lobe epilepsy and a total of 43 seizures. Techniques from optimization theory, in particular quadratic bivalent programming, are applied to optimize the performance of the three measures in detecting preictal entrainment. It is shown that using either of the two resetting criteria, and for all three dynamical measures, dynamical resetting at seizures occurs with a significantly higher probability (α = 0.05) than resetting at randomly selected non-seizure points in days of EEG recordings per patient. It is also shown that dynamical resetting at seizures using time constants of STL(max) synchronization/desynchronization occurs with a higher probability than using the other synchronization measures, whereas dynamical resetting at seizures using the level of synchronization/desynchronization criterion is detected with similar probability using any of the three measures of synchronization. These findings show the robustness of seizure resetting with respect to measures of EEG dynamics and criteria of resetting utilized, and the critical role it might play in further elucidation of ictogenesis, as well as in the development of novel treatments for epilepsy.

摘要

癫痫发作是人类大脑从混沌到有序的间歇性时空转换的表现。通过对癫痫脑关键部位脑电图(EEG)进行动力学分析得到的混沌度量,即最大Lyapunov指数(STL(max)),在癫痫发作前(后)逐渐收敛(发散),这一现象被称为动力学同步(去同步)。这种动力学同步/去同步已经构成了用于癫痫发作长期(数十分钟)、在线、前瞻性预测系统设计和开发的基础。此外,癫痫发作点处观察到的同步/去同步时间常数变化的标准已被用于显示颞叶癫痫(TLE)患者癫痫脑的重置,这一现象暗示癫痫发作本身可能具有恢复正常脑活动的稳态作用。在本文中,我们引入了一种新的标准来测量这种重置,该标准利用观察到的同步/去同步水平的变化。我们将该重置标准与基于观察到的同步/去同步时间常数的旧标准的重置敏感性进行比较。接下来,我们通过一项比较研究来测试重置现象在EEG动力学测量方面的稳健性,该研究涉及STL(max)、相位测量(ϕ(max))和能量测量(E)这三种测量方法,并使用了两种标准(即观察到的同步/去同步的水平和时间常数)。这些测量是通过对两名局灶性颞叶癫痫患者使用硬膜下和深部电极进行颅内脑电图(iEEG)记录,并记录了总共43次发作来估计的。应用优化理论中的技术,特别是二次二值规划,来优化这三种测量方法在检测发作前期夹带方面的性能。结果表明,使用两种重置标准中的任何一种,以及对于所有三种动力学测量方法,癫痫发作时的动力学重置发生的概率(α = 0.05)显著高于每位患者EEG记录日中随机选择的非发作点的重置概率。还表明,使用STL(max)同步/去同步时间常数进行癫痫发作时的动力学重置比使用其他同步测量方法发生的概率更高,而使用同步/去同步标准水平进行癫痫发作时的动力学重置,使用任何一种同步测量方法检测到的概率相似。这些发现表明癫痫发作重置相对于EEG动力学测量方法和所使用的重置标准具有稳健性,以及它在进一步阐明癫痫发作起源以及开发新型癫痫治疗方法中可能发挥的关键作用。

相似文献

7
Long-term prospective on-line real-time seizure prediction.长期前瞻性在线实时癫痫发作预测。
Clin Neurophysiol. 2005 Mar;116(3):532-44. doi: 10.1016/j.clinph.2004.10.013. Epub 2005 Jan 6.

引用本文的文献

3
Model-based design for seizure control by stimulation.基于模型的刺激控制癫痫发作设计。
J Neural Eng. 2020 Mar 26;17(2):026009. doi: 10.1088/1741-2552/ab7a4e.

本文引用的文献

1
Controlling synchronization in a neuron-level population model.控制神经元水平群体模型中的同步
Int J Neural Syst. 2007 Apr;17(2):123-38. doi: 10.1142/S0129065707000993.
6
Comment on "Inability of Lyapunov exponents to predict epileptic seizures".关于《李雅普诺夫指数无法预测癫痫发作》的评论
Phys Rev Lett. 2005 Jan 14;94(1):019801; author reply 019802. doi: 10.1103/PhysRevLett.94.019801. Epub 2005 Jan 3.
8
Adaptive epileptic seizure prediction system.自适应癫痫发作预测系统。
IEEE Trans Biomed Eng. 2003 May;50(5):616-27. doi: 10.1109/TBME.2003.810689.
9
Epileptic seizure prediction and control.癫痫发作的预测与控制。
IEEE Trans Biomed Eng. 2003 May;50(5):549-58. doi: 10.1109/tbme.2003.810705.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验