Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
Biostatistics. 2011 Oct;12(4):610-23. doi: 10.1093/biostatistics/kxq083. Epub 2011 Jan 20.
Association studies in environmental statistics often involve exposure and outcome data that are misaligned in space. A common strategy is to employ a spatial model such as universal kriging to predict exposures at locations with outcome data and then estimate a regression parameter of interest using the predicted exposures. This results in measurement error because the predicted exposures do not correspond exactly to the true values. We characterize the measurement error by decomposing it into Berkson-like and classical-like components. One correction approach is the parametric bootstrap, which is effective but computationally intensive since it requires solving a nonlinear optimization problem for the exposure model parameters in each bootstrap sample. We propose a less computationally intensive alternative termed the "parameter bootstrap" that only requires solving one nonlinear optimization problem, and we also compare bootstrap methods to other recently proposed methods. We illustrate our methodology in simulations and with publicly available data from the Environmental Protection Agency.
环境统计学中的关联研究通常涉及在空间上不对齐的暴露和结果数据。一种常见的策略是使用空间模型(如普遍克立格法)来预测具有结果数据的位置的暴露情况,然后使用预测的暴露值来估计感兴趣的回归参数。这会导致测量误差,因为预测的暴露值与真实值不完全对应。我们通过将其分解为 Berkson 型和经典型分量来描述测量误差。一种校正方法是参数自举法,它是有效的,但计算量很大,因为它需要在每个自举样本中解决暴露模型参数的非线性优化问题。我们提出了一种计算量较小的替代方法,称为“参数自举法”,它只需要解决一个非线性优化问题,并且我们还将自举方法与其他最近提出的方法进行了比较。我们在模拟和美国环境保护署提供的公开数据中说明了我们的方法。