Suppr超能文献

使用氨基硅烷交联剂直接构建仿生羟基磷灰石-明胶纳米复合材料用于骨再生。

Direct scaffolding of biomimetic hydroxyapatite-gelatin nanocomposites using aminosilane cross-linker for bone regeneration.

机构信息

Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27606, USA.

出版信息

J Mater Sci Mater Med. 2012 Sep;23(9):2115-26. doi: 10.1007/s10856-012-4691-6. Epub 2012 Jun 5.

Abstract

Hydroxyapatite-gelatin modified siloxane (GEMOSIL) nanocomposite was developed by coating, kneading and hardening processes to provide formable scaffolding for alloplastic graft applications. The present study aims to characterize scaffolding formability and mechanical properties of GEMOSIL, and to test the in vitro and in vivo biocompatibility of GEMOSIL. Buffer Solution initiated formable paste followed by the sol-gel reaction led to a final hardened composite. Results showed the adequate coating of aminosilane, 11-19 wt%, affected the cohesiveness of the powders and the final compressive strength (69 MPa) of the composite. TGA and TEM results showed the effective aminosilane coating that preserves hydroxyapatite-gelatin nanocrystals from damage. Both GEMOSIL with and without titania increased the mineralization of preosteoblasts in vitro. Only did titania additives revealed good in vivo bone formation in rat calvarium defects. The scaffolding formability, due to cohesive bonding among GEMOSIL particles, could be further refined to fulfill the complicated scaffold processes.

摘要

羟基磷灰石-明胶改性硅氧烷(GEMOSIL)纳米复合材料通过涂层、揉捏和硬化工艺制备,为同种异体移植物应用提供可成型的支架。本研究旨在表征 GEMOSIL 的支架成型性和机械性能,并测试 GEMOSIL 的体外和体内生物相容性。缓冲溶液引发可成型糊剂,随后发生溶胶-凝胶反应,最终得到硬化复合材料。结果表明,氨基硅烷的适当涂层(11-19wt%)影响了粉末的内聚性和复合材料的最终抗压强度(69MPa)。TGA 和 TEM 结果表明,氨基硅烷的有效涂层可防止羟基磷灰石-明胶纳米晶体受损。含有和不含有二氧化钛的 GEMOSIL 都能增加体外成骨前体细胞的矿化。只有二氧化钛添加剂才能在大鼠颅骨缺损中显示出良好的体内骨形成。由于 GEMOSIL 颗粒之间的粘性结合,支架成型性可以进一步细化,以满足复杂的支架工艺。

相似文献

1
Direct scaffolding of biomimetic hydroxyapatite-gelatin nanocomposites using aminosilane cross-linker for bone regeneration.
J Mater Sci Mater Med. 2012 Sep;23(9):2115-26. doi: 10.1007/s10856-012-4691-6. Epub 2012 Jun 5.
3
Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
J Biomater Sci Polym Ed. 2015;26(16):1190-209. doi: 10.1080/09205063.2015.1082809. Epub 2015 Sep 3.
4
Titanium-enriched hydroxyapatite-gelatin scaffolds with osteogenically differentiated progenitor cell aggregates for calvaria bone regeneration.
Tissue Eng Part A. 2013 Aug;19(15-16):1803-16. doi: 10.1089/ten.TEA.2012.0520. Epub 2013 Apr 16.
6
A Porous Hydroxyapatite/Gelatin Nanocomposite Scaffold for Bone Tissue Repair: In Vitro and In Vivo Evaluation.
J Biomater Sci Polym Ed. 2012;23(18):2353-68. doi: 10.1163/156856211X617713. Epub 2012 May 11.
10
Synthesis and Evaluation of BMMSC-seeded BMP-6/nHAG/GMS Scaffolds for Bone Regeneration.
Int J Med Sci. 2019 Jun 10;16(7):1007-1017. doi: 10.7150/ijms.31966. eCollection 2019.

引用本文的文献

2
Combined use of deproteinized bovine bone mineral and α-tricalcium phosphate using gelatin carriers.
BMC Oral Health. 2025 Feb 21;25(1):275. doi: 10.1186/s12903-025-05644-9.
3
The role of echinacoside-based cross-linker nanoparticles in the treatment of osteoporosis.
PeerJ. 2024 Apr 9;12:e17229. doi: 10.7717/peerj.17229. eCollection 2024.
5
Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite.
Int J Nanomedicine. 2019 Mar 22;14:2011-2027. doi: 10.2147/IJN.S191627. eCollection 2019.
9
The biomaterialist's task: scaffold biomaterials and fabrication technologies.
Joints. 2014 Jan 8;1(3):130-7. eCollection 2013 Jul-Sep.

本文引用的文献

1
Aminosilane as an effective binder for hydroxyapatite-gelatin nanocomposites.
J Solgel Sci Technol. 2010 Feb;53(2):459-465. doi: 10.1007/s10971-009-2114-z.
2
Molecular dynamics simulations of the adsorption of bone morphogenetic protein-2 on surfaces with medical relevance.
Langmuir. 2011 Nov 1;27(21):13144-53. doi: 10.1021/la202489w. Epub 2011 Oct 10.
3
Use of calcium phosphate cement scaffolds for bone tissue engineering: in vitro study.
Acta Cir Bras. 2011 Feb;26(1):7-11. doi: 10.1590/s0102-86502011000100003.
4
Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing.
J Mater Sci Mater Med. 2010 Nov;21(11):2947-53. doi: 10.1007/s10856-010-4148-8. Epub 2010 Aug 26.
5
Biodegradable poly(alpha-hydroxy acid) polymer scaffolds for bone tissue engineering.
J Biomed Mater Res B Appl Biomater. 2010 Apr;93(1):285-95. doi: 10.1002/jbm.b.31588.
8
Preparation of porous apatite granules from calcium phosphate cement.
J Mater Sci Mater Med. 2008 May;19(5):2231-9. doi: 10.1007/s10856-007-3326-9. Epub 2007 Dec 1.
9
Cross-linkage of hydroxyapatite/gelatin nanocomposite using imide-based zero-length cross-linker.
J Mater Sci Mater Med. 2007 Oct;18(10):2045-51. doi: 10.1007/s10856-007-3152-0. Epub 2007 Jun 9.
10
Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite.
Biomacromolecules. 2007 Feb;8(2):631-7. doi: 10.1021/bm060879w. Epub 2007 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验