Suppr超能文献

由 ESCRT-III 聚合和重塑驱动的胞质分离的计算模型。

Computational model of cytokinetic abscission driven by ESCRT-III polymerization and remodeling.

机构信息

Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, USA.

出版信息

Biophys J. 2012 May 16;102(10):2309-20. doi: 10.1016/j.bpj.2012.04.007. Epub 2012 May 15.

Abstract

The endosomal sorting complex required for transport (ESCRT)-III complex, capable of polymerization and remodeling, participates in abscission of the intercellular membrane bridge connecting two daughter cells at the end of cytokinesis. Here, we integrate quantitative imaging of ESCRT-III during cytokinetic abscission with biophysical properties of ESCRT-III complexes to formulate and test a computational model for ESCRT-mediated cytokinetic abscission. We propose that cytokinetic abscission is driven by an ESCRT-III fission complex, which arises from ESCRT-III polymerization at the edge of the cytokinetic midbody structure, located at the center of the intercellular bridge. Formation of the fission complex is completed by remodeling and breakage of the ESCRT-III polymer assisted by VPS4. Subsequent spontaneous constriction of the fission complex generates bending deformation of the intercellular bridge membrane. The related membrane elastic force propels the fission complex along the intercellular bridge away from the midbody until it reaches an equilibrium position, determining the scission site. Membrane attachment to the dome-like end-cap of the fission complex drives membrane fission, completing the abscission process. We substantiate the model by theoretical analysis of the membrane elastic energy and by experimental verification of the major model assumptions.

摘要

内体分选复合物运输所需复合物(ESCRT-III 复合物)能够进行聚合和重塑,参与胞质分裂末期连接两个子细胞的细胞间膜桥的断裂。在这里,我们将 ESCRT-III 在胞质分裂断裂过程中的定量成像与 ESCRT-III 复合物的生物物理特性相结合,构建并测试了一个用于 ESCRT 介导的胞质分裂断裂的计算模型。我们提出,胞质分裂断裂是由 ESCRT-III 分裂复合物驱动的,该复合物是由位于细胞间桥中心的胞质分裂中体结构边缘的 ESCRT-III 聚合产生的。分裂复合物的形成是通过 VPS4 辅助的 ESCRT-III 聚合物的重塑和断裂完成的。随后,分裂复合物的自发收缩会产生细胞间桥膜的弯曲变形。相关的膜弹性力推动分裂复合物沿着细胞间桥远离中体,直到达到平衡位置,从而确定断裂位置。膜与分裂复合物的圆顶状端帽的附着驱动膜的分裂,完成断裂过程。我们通过对膜弹性能量的理论分析和对主要模型假设的实验验证来证实该模型。

相似文献

10
VPS4 triggers constriction and cleavage of ESCRT-III helical filaments.VPS4 触发 ESCRT-III 螺旋丝的收缩和断裂。
Sci Adv. 2019 Apr 10;5(4):eaau7198. doi: 10.1126/sciadv.aau7198. eCollection 2019 Apr.

引用本文的文献

4
Mechanics and regulation of cytokinetic abscission.细胞分裂期胞质分裂的机制与调控
Front Cell Dev Biol. 2022 Nov 24;10:1046617. doi: 10.3389/fcell.2022.1046617. eCollection 2022.
7
Snf7 spirals sense and alter membrane curvature.Snf7 螺旋感知并改变膜曲率。
Nat Commun. 2022 Apr 21;13(1):2174. doi: 10.1038/s41467-022-29850-z.
9
A Structural View on ESCRT-Mediated Abscission.关于ESCRT介导的分裂的结构观点。
Front Cell Dev Biol. 2020 Nov 9;8:586880. doi: 10.3389/fcell.2020.586880. eCollection 2020.

本文引用的文献

1
ESCRT machinery and cytokinesis: the road to daughter cell separation.ESCRT 机器和胞质分裂:通向子细胞分离的道路。
Traffic. 2011 Oct;12(10):1318-26. doi: 10.1111/j.1600-0854.2011.01244.x. Epub 2011 Jul 27.
3
Regulation of Vps4 during MVB sorting and cytokinesis.Vps4 在 MVB 分拣和胞质分裂过程中的调控。
Traffic. 2011 Oct;12(10):1298-305. doi: 10.1111/j.1600-0854.2011.01230.x. Epub 2011 Jul 7.
4
Inside-out Z rings--constriction with and without GTP hydrolysis.内外翻转 Z 环——有无 GTP 水解的收缩。
Mol Microbiol. 2011 Jul;81(2):571-9. doi: 10.1111/j.1365-2958.2011.07716.x. Epub 2011 Jun 16.
8
Divergent pathways lead to ESCRT-III-catalyzed membrane fission.不同的途径导致 ESCRT-III 催化的膜裂变。
Trends Biochem Sci. 2011 Apr;36(4):199-210. doi: 10.1016/j.tibs.2010.09.004. Epub 2010 Oct 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验