Suppr超能文献

基于金蘑菇形微电极阵列的片上电穿孔、膜修复动力学和细胞内瞬态记录。

On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes.

机构信息

Department of Neurobiology the Life Sciences Institute, and the Harvey M. Kruger Family center for Nanoscience and Nanotechnology. The Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

Lab Chip. 2012 Aug 21;12(16):2865-73. doi: 10.1039/c2lc40091j. Epub 2012 Jun 7.

Abstract

This study demonstrates the use of on-chip gold mushroom-shaped microelectrodes (gMμEs) to generate localized electropores in the plasma membrane of adhering cultured neurons and to electrophysiologically monitor the ensuing membrane repair dynamics. Delivery of an alternating voltage pulse (0.5-1 V, 100 Hz, 300 ms) through an extracellularly positioned micrometer-sized gMμE electroporates the patch of plasma membrane facing the microelectrode. The repair dynamics of the electropores were analyzed by continuous monitoring of the neuron transmembrane potential, input resistance (R(in)) and action potential (AP) amplitude with an intracellular microelectrode and a number of neighbouring extracellular gMμEs. Electroporation by a gMμE is associated with local elevation of the free intracellular calcium concentration (Ca(2+)) around the gMμE. The membrane repair kinetics proceeds as an exponential process interrupted by abrupt recovery steps. These abrupt events are consistent with the "membrane patch model" of membrane repair in which patches of intracellular membrane fuse with the plasma membrane at the site of injury. Membrane electroporation by a single gMμE generates a neuron-gMμE configuration that permits recordings of attenuated intracellular action potentials. We conclude that the use of on-chip cultured neurons via a gMμE configuration provides a unique neuroelectronic interface that enables the selection of individual cells for electroporation, generates a confined electroporated membrane patch, monitors membrane repair dynamics and records attenuated intracellular action potentials.

摘要

本研究展示了在贴壁培养神经元的质膜上生成局部电穿孔的片上金蘑菇状微电极 (gMμE) 的应用,并对随后的膜修复动力学进行电生理监测。通过置于细胞外的微米级 gMμE 施加交流电压脉冲(0.5-1 V,100 Hz,300 ms),可在面向微电极的质膜片上穿孔。通过细胞内微电极和多个相邻的细胞外 gMμE 连续监测神经元跨膜电位、输入电阻 (R(in)) 和动作电位 (AP) 幅度,分析电穿孔的修复动力学。gMμE 的电穿孔会导致 gMμE 周围细胞内游离钙离子浓度 (Ca(2+)) 的局部升高。膜修复动力学呈指数过程,中间会出现突然的恢复步骤。这些突然的事件与膜修复的“膜片模型”一致,其中细胞内膜的斑块在损伤部位与质膜融合。单个 gMμE 的膜电穿孔会生成神经元-gMμE 结构,允许记录衰减的细胞内动作电位。我们得出结论,通过 gMμE 结构使用片上培养神经元提供了一种独特的神经电子接口,允许选择单个细胞进行电穿孔,生成受限的电穿孔质膜片,监测膜修复动力学并记录衰减的细胞内动作电位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验