BAM Bundesanstalt für Materialforschung und -prüfung, 12200 Berlin, Germany.
Anal Chem. 2012 Jul 17;84(14):5984-91. doi: 10.1021/ac300585q. Epub 2012 Jun 29.
We present a new synchrotron X-ray photoelectron spectroscopy strategy for surface chemical analysis of materials. Our approach is based on the acquisition of photoelectron spectra at constant kinetic energies with the help of a tunable synchrotron X-radiation source. This ensures both constant and tunable information depth for all elements in a very thin organic layer. Many of the problems known to XPS depth profiling using laboratory equipment are thereby avoided. Using our methodology, the 95% information depth, z(95%), can be tuned down to about 0.7 nm in organic materials. The upper limit in our study at the HE-SGM monochromator dipole magnet beamline at the synchrotron radiation source BESSY II is about 4.3 nm. Elemental quantification is achieved through relative sensitivity factors (RSF) specific to the measurement conditions, determined either with the help of calculated photoionization cross sections and inelastic mean free paths or experimentally. The potential of the technique is demonstrated for the in-depth analysis of plasma deposited nitrogen-rich organic thin films used in biomedical applications.
我们提出了一种新的基于同步加速器 X 射线光电子能谱技术的材料表面化学分析方法。我们的方法基于在可调谐的同步加速器 X 射线源的帮助下,以恒定动能获取光电子能谱。这确保了非常薄的有机层中所有元素的恒定且可调的信息深度。使用实验室设备进行 XPS 深度剖析时已知的许多问题因此得以避免。使用我们的方法,95%的信息深度 z(95%)可以在有机材料中调至约 0.7nm。在 BESSY II 同步辐射源的 HE-SGM 磁偶极子光束线的我们的研究中,上限约为 4.3nm。通过特定于测量条件的相对灵敏度因子 (RSF) 实现元素定量,这些因子是通过计算的光电离截面和非弹性平均自由程或实验确定的。该技术的潜力在用于生物医学应用的等离子体沉积富氮有机薄膜的深度分析中得到了证明。