UMR 7141, CNRS et Université Pierre et Marie Curie (Paris VI), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
J Biol Chem. 2012 Jul 27;287(31):26445-52. doi: 10.1074/jbc.M112.370205. Epub 2012 Jun 12.
Spectroscopic studies on photosynthetic electron transfer generally are based upon the monitoring of dark to light changes in the electron transfer chain. These studies, which focus on the light reactions of photosynthesis, also indirectly provide information on the redox or metabolic state of the chloroplast in the dark. Here, using the unicellular microalga Chlamydomonas reinhardtii, we study the impact of heterotrophic/mixotrophic acetate feeding on chloroplast carbon metabolism by using the spectrophotometric detection of P700(+), the photooxidized primary electron donor of photosystem I. We show that, when photosynthetic linear and cyclic electron flows are blocked (DCMU inhibiting PSII and methylviologen accepting electrons from PSI), the post-illumination reduction kinetics of P700(+) directly reflect the dark metabolic production of reductants (mainly NAD(P)H) in the stroma of chloroplasts. Such results can be correlated to other metabolic studies: in the absence of acetate, for example, the P700(+) reduction rate matches the rate of starch breakdown reported previously, confirming the chloroplast localization of the upstream steps of the glycolytic pathway in Chlamydomonas. Furthermore, the question of the interplay between photosynthetic and non-photosynthetic carbon metabolism can be addressed. We show that cyclic electron flow around photosystem I is twice as fast in a starchless mutant fed with acetate than it is in the WT, and we relate how changes in the flux of electrons from carbohydrate metabolism modulate the redox poise of the plastoquinone pool in the dark through chlororespiration.
光合作用电子传递的光谱研究通常基于监测电子传递链的暗至光变化。这些研究集中在光合作用的光反应上,也间接地提供了关于叶绿体在黑暗中氧化还原或代谢状态的信息。在这里,我们使用单细胞微藻莱茵衣藻研究了异养/混合营养乙酸喂养对叶绿体碳代谢的影响,方法是使用分光光度法检测 P700(+),即光系统 I 的光氧化初级电子供体。我们表明,当光合作用线性和环式电子流被阻断时(DCMU 抑制 PSII,甲紫精从 PSI 接受电子),P700(+)的后光照还原动力学直接反映了叶绿体基质中还原剂(主要是 NAD(P)H)的暗代谢产物。这些结果可以与其他代谢研究相关联:例如,在没有乙酸的情况下,P700(+)的还原速率与先前报道的淀粉分解速率相匹配,这证实了糖酵解途径的上游步骤在衣藻中的叶绿体定位。此外,还可以解决光合作用和非光合作用碳代谢之间相互作用的问题。我们表明,在喂食乙酸的无淀粉突变体中,光系统 I 周围的环式电子流比 WT 快两倍,并且我们说明了来自碳水化合物代谢的电子流变化如何通过叶绿体呼吸调节暗区中质体醌池的氧化还原平衡。