Suppr超能文献

临床效果研究人员的数据模型考虑因素。

Data model considerations for clinical effectiveness researchers.

机构信息

Department of Pediatrics, Division of Pediatric Epidemiology, University of Colorado, Denver, CO, USA.

出版信息

Med Care. 2012 Jul;50 Suppl(0):S60-7. doi: 10.1097/MLR.0b013e318259bff4.

Abstract

INTRODUCTION

Growing adoption of electronic health records and increased emphasis on the reuse and integration of clinical care and administration data require a robust informatics infrastructure to inform health care effectiveness in real-world settings. The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) was one of 3 projects receiving Agency for Healthcare Quality and Research funds to create a scalable, distributed network to support Comparative Effectiveness Research. SAFTINet's method of extracting and compiling data from disparate entities requires the use of a shared common data model. DATA MODELS: Focusing on the needs of CER investigators, in addition to other project considerations, we examined the suitability of several data models. Data modeling is the process of determining which data elements will be stored and how they will be stored, including their relationships and constraints. Addressing compromises between complexity and usability is critical to modeling decisions.

CASE STUDY

The SAFTINet project provides the case study for describing data model evaluation. A sample use case defines a cohort of asthma subjects that illustrates the need to identify patients by age, diagnoses, and medication use while excluding those with diagnoses that may often be misdiagnosed as asthma.

DISCUSSION

The SAFTINet team explored several data models against a set of technical and investigator requirements to select a data model that best fit its needs and was conducive to expansion with new research requirements. Although SAFTINet ultimately chose the Observation Medical Outcomes Partnership common data model, other valid options exist and prioritization of requirements is dependent upon many factors.

摘要

简介

电子健康记录的应用日益广泛,对临床护理和管理数据的重用和集成的重视程度不断提高,这需要一个强大的信息学基础设施,以便在实际环境中提供医疗效果信息。可扩展的联邦转化研究网络架构(SAFTINet)是获得医疗保健质量和研究机构资金的 3 个项目之一,旨在创建一个可扩展的分布式网络,以支持比较效果研究。SAFTINet 从不同实体中提取和编译数据的方法需要使用共享的通用数据模型。

数据模型

除了其他项目考虑因素外,我们还专注于 CER 研究人员的需求,研究了几种数据模型的适用性。数据建模是确定将存储哪些数据元素以及如何存储这些元素的过程,包括它们的关系和约束。在建模决策中,解决复杂性和可用性之间的折衷是至关重要的。

案例研究

SAFTINet 项目提供了描述数据模型评估的案例研究。一个示例用例定义了一个哮喘患者队列,说明了需要根据年龄、诊断和药物使用来识别患者,同时排除那些可能经常被误诊为哮喘的诊断。

讨论

SAFTINet 团队针对一组技术和研究人员要求,探索了几种数据模型,以选择最符合其需求且有利于扩展新研究要求的数据模型。尽管 SAFTINet 最终选择了观察医疗结局伙伴关系的通用数据模型,但其他有效选项也存在,并且要求的优先级取决于许多因素。

相似文献

引用本文的文献

6
Constructing Epidemiologic Cohorts from Electronic Health Record Data.从电子健康记录数据中构建流行病学队列。
Int J Environ Res Public Health. 2021 Dec 14;18(24):13193. doi: 10.3390/ijerph182413193.

本文引用的文献

1
Achieving a nationwide learning health system.实现全国性的学习型医疗体系。
Sci Transl Med. 2010 Nov 10;2(57):57cm29. doi: 10.1126/scitranslmed.3001456.
2
Making the most of federal health information technology regulations.充分利用联邦健康信息技术法规。
Health Aff (Millwood). 2010 Apr;29(4):596-600. doi: 10.1377/hlthaff.2010.0232.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验