Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
Sci Signal. 2012 Jun 12;5(228):pe26. doi: 10.1126/scisignal.2003181.
Most bacteria generate nitric oxide (NO) either aerobically by NO synthases or anaerobically from nitrite. Far from being a mere by-product of nitrate respiration, bacterial NO has diverse physiological roles. Many proteins undergo NO-mediated posttranslational modification (S-nitrosylation) in anaerobically grown Escherichia coli. The regulation of one such protein, OxyR, represents a redox signaling paradigm in which the same transcription factor controls different protective genes depending on its S-nitrosylation versus S-oxidation status. We discuss a structural model that may explain the remarkable stability and specificity of OxyR S-nitrosylation.
大多数细菌通过氮氧合酶在有氧条件下或通过亚硝酸盐在无氧条件下生成一氧化氮(NO)。细菌产生的 NO 远非硝酸盐呼吸的副产物,它具有多种生理作用。在厌氧生长的大肠杆菌中,许多蛋白质经历了由 NO 介导的翻译后修饰(S-亚硝基化)。一种这样的蛋白质,OxyR 的调节代表了一种氧化还原信号范例,其中相同的转录因子根据其 S-亚硝基化与 S-氧化状态来控制不同的保护基因。我们讨论了一个结构模型,该模型可能解释了 OxyR S-亚硝基化的显著稳定性和特异性。