Suppr超能文献

多变量全基因组平均区间作图:多个性状和/或环境的 QTL 分析。

Multivariate whole genome average interval mapping: QTL analysis for multiple traits and/or environments.

机构信息

School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia.

出版信息

Theor Appl Genet. 2012 Sep;125(5):933-53. doi: 10.1007/s00122-012-1884-9. Epub 2012 Jun 13.

Abstract

A major aim in some plant-based studies is the determination of quantitative trait loci (QTL) for multiple traits or across multiple environments. Understanding these QTL by trait or QTL by environment interactions can be of great value to the plant breeder. A whole genome approach for the analysis of QTL is presented for such multivariate applications. The approach is an extension of whole genome average interval mapping in which all intervals on a linkage map are included in the analysis simultaneously. A random effects working model is proposed for the multivariate (trait or environment) QTL effects for each interval, with a variance-covariance matrix linking the variates in a particular interval. The significance of the variance-covariance matrix for the QTL effects is tested and if significant, an outlier detection technique is used to select a putative QTL. This QTL by variate interaction is transferred to the fixed effects. The process is repeated until the variance-covariance matrix for QTL random effects is not significant; at this point all putative QTL have been selected. Unlinked markers can also be included in the analysis. A simulation study was conducted to examine the performance of the approach and demonstrated the multivariate approach results in increased power for detecting QTL in comparison to univariate methods. The approach is illustrated for data arising from experiments involving two doubled haploid populations. The first involves analysis of two wheat traits, α-amylase activity and height, while the second is concerned with a multi-environment trial for extensibility of flour dough. The method provides an approach for multi-trait and multi-environment QTL analysis in the presence of non-genetic sources of variation.

摘要

在一些基于植物的研究中,一个主要目标是确定多个性状或多个环境下的数量性状位点 (QTL)。通过性状或 QTL 与环境相互作用来了解这些 QTL 对植物育种者来说具有很大的价值。本文提出了一种用于此类多变量应用的全基因组 QTL 分析方法。该方法是全基因组平均区间作图的扩展,其中连锁图谱上的所有区间都同时包含在分析中。为每个区间的多变量(性状或环境)QTL 效应提出了一个随机效应工作模型,并用一个方差协方差矩阵将特定区间中的变量联系起来。对 QTL 效应的方差协方差矩阵进行显著性检验,如果显著,则使用异常值检测技术选择一个假定的 QTL。这种 QTL 与变量的相互作用被转移到固定效应中。这个过程一直重复,直到 QTL 随机效应的方差协方差矩阵不再显著;此时,所有假定的 QTL 都已被选择。未连锁的标记也可以包含在分析中。一项模拟研究检验了该方法的性能,结果表明,与单变量方法相比,该多变量方法在检测 QTL 方面具有更高的功效。该方法还用于涉及两个双单倍体群体的实验数据。第一个实验涉及分析两个小麦性状,α-淀粉酶活性和高度,而第二个实验则涉及面粉面团延展性的多环境试验。该方法为存在非遗传变异源的多性状和多环境 QTL 分析提供了一种方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验