Suppr超能文献

R2KS:一种基于排名基因列表比较基因表达的新方法。

R2KS: a novel measure for comparing gene expression based on ranked gene lists.

作者信息

Ni Shengyu, Vingron Martin

机构信息

CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Shanghai, China.

出版信息

J Comput Biol. 2012 Jun;19(6):766-75. doi: 10.1089/cmb.2012.0026.

Abstract

Bioinformatics analyses frequently yield results in the form of lists of genes sorted by, for example, sequence similarity to a query sequence or degree of differential expression of a gene upon a change of cellular condition. Comparison of such results may depend strongly on the particular scoring system throughout the entire list, although the crucial information resides in which genes are ranked at the top of the list. Here, we propose to reduce the lists to the mere ranking of the genes and to compare only the ranked lists. To this end, we introduce a measure of similarity between ranked lists. Our measure puts particular emphasis on finding the same items near the top of the list, while the genes further down should not have a strong influence. Our approach can be understood as a special version of a two-dimensional Kolmogorov-Smirnov statistic. We present a dynamic programming algorithm for its computation and study the distribution of the similarity values. The performance on simulated and on real biological data is studied in comparison to other available measures. Supplementary Material is available online (www.liebertonline.com/cmb).

摘要

生物信息学分析常常以基因列表的形式产生结果,这些基因列表是按照例如与查询序列的序列相似性或细胞条件变化时基因的差异表达程度进行排序的。尽管关键信息在于哪些基因排在列表顶部,但此类结果的比较可能在很大程度上取决于整个列表所采用的特定评分系统。在此,我们建议将列表简化为仅对基因进行排序,并仅比较排序后的列表。为此,我们引入了一种排序后列表之间的相似性度量。我们的度量特别强调在列表顶部附近找到相同的项目,而靠后的基因不应产生强烈影响。我们的方法可以理解为二维柯尔莫哥洛夫 - 斯米尔诺夫统计量的一个特殊版本。我们提出了一种用于其计算的动态规划算法,并研究了相似性值的分布。与其他可用度量相比,我们研究了该方法在模拟生物数据和真实生物数据上的性能。补充材料可在线获取(www.liebertonline.com/cmb)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验