Suppr超能文献

轴突特性决定了体外 CA1 海马体锐波/涟漪和持续 γ 振荡模型中的躯体放电。

Axonal properties determine somatic firing in a model of in vitro CA1 hippocampal sharp wave/ripples and persistent gamma oscillations.

机构信息

Department of Physical Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.

出版信息

Eur J Neurosci. 2012 Sep;36(5):2650-60. doi: 10.1111/j.1460-9568.2012.08184.x. Epub 2012 Jun 15.

Abstract

Evidence has been presented that CA1 pyramidal cells, during spontaneous in vitro sharp wave/ripple (SPW-R) complexes, generate somatic action potentials that originate in axons. 'Participating' (somatically firing) pyramidal cells fire (almost always) at most once during a particular SPW-R whereas non-participating cells virtually never fire during an SPW-R. Somatic spikelets were small or absent, while ripple-frequency EPSCs and IPSCs occurred during the SPW-R in pyramidal neurons. These experimental findings could be replicated with a network model in which electrical coupling was present between small pyramidal cell axonal branches. Here, we explore this model in more depth. Factors that influence somatic participation include: (i) the diameter of axonal branches that contain coupling sites to other axons, because firing in larger branches injects more current into the main axon, increasing antidromic firing probability; (ii) axonal K(+) currents and (iii) somatic hyperpolarization and shunting. We predict that portions of axons fire at high frequency during SPW-R, while somata fire much less. In the model, somatic firing can occur by occasional generation of full action potentials in proximal axonal branches, which are excited by high-frequency spikelets. When the network contains phasic synaptic inhibition, at the axonal gap junction site, gamma oscillations result, again with more frequent axonal firing than somatic firing. Combining the models, so as to generate gamma followed by sharp waves, leads to strong overlap between the population of cells firing during gamma and the population of cells firing during a subsequent sharp wave, as observed in vivo.

摘要

有证据表明,在自发的体外尖波/涟漪(SPW-R)复合物中,CA1 锥体神经元会产生起源于轴突的体部动作电位。“参与”(体部放电)的锥体神经元在特定的 SPW-R 期间通常只放电一次,而非参与的神经元在 SPW-R 期间几乎从不放电。体部棘波很小或不存在,而在锥体神经元中,涟漪频率 EPSC 和 IPSC 在 SPW-R 期间发生。在存在电耦合的小锥体细胞轴突分支的网络模型中,可以复制这些实验发现。在这里,我们更深入地探讨了这个模型。影响体部参与的因素包括:(i)包含与其他轴突耦合位点的轴突分支的直径,因为较大分支中的放电会向主轴突注入更多电流,从而增加逆行放电的概率;(ii)轴突 K+电流和(iii)体部超极化和分流。我们预测,在 SPW-R 期间,轴突的某些部分会以高频放电,而体部放电则较少。在该模型中,体部放电可以通过偶尔在近端轴突分支中产生全动作电位来实现,这些分支被高频棘波激发。当网络包含阶段性的突触抑制时,在轴突缝隙连接部位会产生 gamma 振荡,同样是轴突放电比体部放电更频繁。将这些模型结合起来,以产生 gamma 波随后是尖波,会导致在 gamma 期间放电的细胞群体和在随后的尖波期间放电的细胞群体之间有很强的重叠,这与在体内观察到的情况一致。

相似文献

4
Synaptic plasticity by antidromic firing during hippocampal network oscillations.海马网络振荡时的逆行放电引起的突触可塑性。
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5175-80. doi: 10.1073/pnas.1210735110. Epub 2013 Mar 11.
8
Impairment of Sharp-Wave Ripples in a Murine Model of Dravet Syndrome.Dravet 综合征小鼠模型中海马尖波涟漪的损伤。
J Neurosci. 2019 Nov 13;39(46):9251-9260. doi: 10.1523/JNEUROSCI.0890-19.2019. Epub 2019 Sep 19.

引用本文的文献

7
A Role for Electrotonic Coupling Between Cortical Pyramidal Cells.皮质锥体细胞之间电紧张耦合的作用。
Front Comput Neurosci. 2019 May 28;13:33. doi: 10.3389/fncom.2019.00033. eCollection 2019.
10
Memory replay in balanced recurrent networks.平衡循环网络中的记忆重放
PLoS Comput Biol. 2017 Jan 30;13(1):e1005359. doi: 10.1371/journal.pcbi.1005359. eCollection 2017 Jan.

本文引用的文献

2
Why do axons differ in caliber?轴突的粗细为什么会不同?
J Neurosci. 2012 Jan 11;32(2):626-38. doi: 10.1523/JNEUROSCI.4254-11.2012.
4
Coherent phasic excitation during hippocampal ripples.海马回波相干相位激发
Neuron. 2011 Oct 6;72(1):137-52. doi: 10.1016/j.neuron.2011.08.016.
9
Axon physiology.轴突生理学。
Physiol Rev. 2011 Apr;91(2):555-602. doi: 10.1152/physrev.00048.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验