Suppr超能文献

极端耐真菌作为生物技术的遗传资源。

Extremotolerant fungi as genetic resources for biotechnology.

机构信息

Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.

出版信息

Bioengineered. 2012 Sep-Oct;3(5):293-7. doi: 10.4161/bioe.20713. Epub 2012 Jun 18.

Abstract

Increased stress tolerance of economically important plants and microorganisms can improve yields in agriculture and industrial microbiology. The pool of resources used for the genetic modification of crops and industrial fungal strains in the past has been relatively limited, and has frequently included only stress-sensitive organisms. However, certain groups of fungi have evolved specialized mechanisms that enable them to thrive under even the most extreme of environmental conditions. These species can be considered as promising sources of biotechnologically interesting genes. Together with a powerful and convenient high-throughput functional screening method, extremotolerant fungi represent a new opportunity for the identification of stress-tolerance-conferring genes. The approaches described here should provide important contributions to the enhancing of the properties of economically important organisms in the future.

摘要

提高经济上重要的植物和微生物的抗压力,可以提高农业和工业微生物学的产量。过去用于作物和工业真菌菌株遗传修饰的资源库相对有限,而且经常只包括对压力敏感的生物。然而,某些真菌群体已经进化出专门的机制,使它们能够在最极端的环境条件下茁壮成长。这些物种可以被视为具有生物技术应用潜力的基因的有希望的来源。与强大而便捷的高通量功能筛选方法一起,极端耐受真菌为鉴定赋予抗压力的基因提供了新的机会。这里描述的方法应该为未来提高经济上重要的生物的特性做出重要贡献。

相似文献

1
Extremotolerant fungi as genetic resources for biotechnology.
Bioengineered. 2012 Sep-Oct;3(5):293-7. doi: 10.4161/bioe.20713. Epub 2012 Jun 18.
2
Genetic resources of extremotolerant fungi: a method for identification of genes conferring stress tolerance.
Bioresour Technol. 2012 May;111:360-7. doi: 10.1016/j.biortech.2012.02.039. Epub 2012 Feb 17.
3
A deeply divergent phosphoglucomutase (PGM) of Giardia lamblia has both PGM and phosphomannomutase activities.
Glycobiology. 2010 Oct;20(10):1233-40. doi: 10.1093/glycob/cwq081. Epub 2010 May 27.
4
Characterization of the essential yeast gene encoding N-acetylglucosamine-phosphate mutase.
Eur J Biochem. 1994 Apr 15;221(2):741-7. doi: 10.1111/j.1432-1033.1994.tb18787.x.
5
Challenges and perspectives to improve crop drought and salinity tolerance.
N Biotechnol. 2013 May 25;30(4):355-61. doi: 10.1016/j.nbt.2012.11.001. Epub 2012 Nov 16.
6
OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance.
PLoS One. 2012;7(9):e45117. doi: 10.1371/journal.pone.0045117. Epub 2012 Sep 14.
10

引用本文的文献

2
Fungi, a neglected component of acidophilic biofilms: do they have a potential for biotechnology?
Extremophiles. 2019 May;23(3):267-275. doi: 10.1007/s00792-019-01085-9. Epub 2019 Mar 6.
3
Alkaline Technosol contaminated by former mining activity and its culturable autochthonous microbiota.
Chemosphere. 2017 Mar;171:89-96. doi: 10.1016/j.chemosphere.2016.11.131. Epub 2016 Dec 19.
4
Genetic transformation of extremophilic fungi Acidea extrema and Acidothrix acidophila.
Folia Microbiol (Praha). 2015 Jul;60(4):365-71. doi: 10.1007/s12223-015-0398-7. Epub 2015 May 2.

本文引用的文献

1
Genetic resources of extremotolerant fungi: a method for identification of genes conferring stress tolerance.
Bioresour Technol. 2012 May;111:360-7. doi: 10.1016/j.biortech.2012.02.039. Epub 2012 Feb 17.
2
A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.
PLoS One. 2012;7(2):e31235. doi: 10.1371/journal.pone.0031235. Epub 2012 Feb 17.
3
Evolution of fungal pathogens in domestic environments?
Fungal Biol. 2011 Oct;115(10):1008-18. doi: 10.1016/j.funbio.2011.03.004. Epub 2011 Mar 15.
4
Transgenic crops coping with water scarcity.
N Biotechnol. 2010 Nov 30;27(5):473-7. doi: 10.1016/j.nbt.2010.08.005. Epub 2010 Aug 17.
5
Technological trends, global market, and challenges of bio-ethanol production.
Biotechnol Adv. 2010 Nov-Dec;28(6):817-30. doi: 10.1016/j.biotechadv.2010.07.001. Epub 2010 Jul 12.
6
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.
Syst Biol. 2010 May;59(3):307-21. doi: 10.1093/sysbio/syq010. Epub 2010 Mar 29.
7
Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2009 Nov;85(2):253-63. doi: 10.1007/s00253-009-2223-1. Epub 2009 Sep 16.
8
Patenting drought tolerance in organisms.
Recent Pat DNA Gene Seq. 2009;3(1):16-25. doi: 10.2174/187221509787236228.
9
Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects.
Plant Cell Rep. 2008 Mar;27(3):411-24. doi: 10.1007/s00299-007-0474-9. Epub 2007 Nov 20.
10
Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol.
FEMS Yeast Res. 2007 Jan;7(1):22-32. doi: 10.1111/j.1567-1364.2006.00152.x. Epub 2006 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验