Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 USA.
J Control Release. 2012 Aug 20;162(1):208-17. doi: 10.1016/j.jconrel.2012.06.020. Epub 2012 Jun 23.
Drug nanocarrier clearance by the immune system must be minimized to achieve targeted delivery to pathological tissues. There is considerable interest in finding in vitro tests that can predict in vivo clearance outcomes. In this work, we produce nanocarriers with dense PEG layers resulting from block copolymer-directed assembly during rapid precipitation. Nanocarriers are formed using block copolymers with hydrophobic blocks of polystyrene (PS), poly-ε-caprolactone (PCL), poly-D,L-lactide (PLA), or poly-lactide-co-glycolide (PLGA), and hydrophilic blocks of polyethylene glycol (PEG) with molecular weights from 1 kg/mol to 9 kg/mol. Nanocarriers with paclitaxel prodrugs are evaluated in vivo in Foxn1(nu) mice to determine relative rates of clearance. The amount of nanocarrier in circulation after 4h varies from 10% to 85% of initial dose, depending on the block copolymer. In vitro complement activation assays are conducted to correlate in vivo circulation to the protection of the nanocarrier surface from complement binding and activation. Guidelines for optimizing block copolymer structure to maximize circulation of nanocarriers formed by rapid precipitation and directed assembly are proposed, relating to the relative sizes of the hydrophilic and hydrophobic blocks, the hydrophobicity of the anchoring block, the absolute size of the PEG block, and polymer crystallinity. The in vitro results distinguish between the poorly circulating PEG(5k)-PCL(9 k) and the better circulating nanocarriers, but could not rank the better circulating nanocarriers in order of circulation time. Analysis of PEG surface packing on monodisperse 200 nm latex spheres indicates that the size of the hydrophobic PCL, PS, and PLA blocks are correlated with the PEG blob size. Suggestions for next steps for in vitro measurements are made.
药物纳米载体必须被免疫系统最小化清除,以实现对病理性组织的靶向递药。人们非常有兴趣寻找能够预测体内清除结果的体外测试方法。在这项工作中,我们使用在快速沉淀过程中由嵌段共聚物导向组装产生的致密 PEG 层的纳米载体。纳米载体是由具有疏水性嵌段的聚苯乙烯(PS)、聚己内酯(PCL)、聚-D,L-丙交酯(PLA)或聚丙交酯-乙交酯(PLGA)和分子量为 1 kg/mol 至 9 kg/mol 的聚乙二醇(PEG)的亲水性嵌段的嵌段共聚物形成的。载有紫杉醇前药的纳米载体在 Foxn1(nu)小鼠体内进行评估,以确定清除的相对速率。在 4 小时后,循环中的纳米载体量占初始剂量的 10%至 85%,具体取决于嵌段共聚物。进行体外补体激活测定以将体内循环与纳米载体表面免受补体结合和激活的保护相关联。提出了优化嵌段共聚物结构以最大化通过快速沉淀和定向组装形成的纳米载体循环的指南,这与亲水性和疏水性嵌段的相对大小、锚固嵌段的疏水性、PEG 嵌段的绝对大小以及聚合物结晶度有关。体外结果区分了较差循环的 PEG(5k)-PCL(9 k)和更好循环的纳米载体,但无法根据循环时间对更好循环的纳米载体进行排序。对单分散 200nm 乳胶球的 PEG 表面堆积的分析表明,疏水性 PCL、PS 和 PLA 嵌段的大小与 PEG 团块的大小相关。提出了用于体外测量的下一步建议。