Suppr超能文献

宿主对金黄色葡萄球菌α-溶血素的反应特征提示肺部 Th17 反应。

Host response signature to Staphylococcus aureus alpha-hemolysin implicates pulmonary Th17 response.

机构信息

Department of Pathology, University of Chicago, Chicago, Illinois, USA.

出版信息

Infect Immun. 2012 Sep;80(9):3161-9. doi: 10.1128/IAI.00191-12. Epub 2012 Jun 25.

Abstract

Staphylococcus aureus pneumonia causes significant morbidity and mortality. Alpha-hemolysin (Hla), a pore-forming cytotoxin of S. aureus, has been identified through animal models of pneumonia as a critical virulence factor that induces lung injury. In spite of considerable molecular knowledge of how this cytotoxin injures the host, the precise host response to Hla in the context of infection remains poorly understood. We employed whole-genome expression profiling of infected lungs to define the host response to wild-type S. aureus compared with the response to an Hla-deficient isogenic mutant in experimental pneumonia. These data provide a complete expression profile at 4 and at 24 h postinfection, revealing a unique response to the toxin-expressing strain. Gene ontogeny analysis revealed significant differences in the extracellular matrix and cardiomyopathy pathways, both of which govern cellular interactions in the tissue microenvironment. Evaluation of individual transcript responses to Hla-secreting staphylococci was notable for upregulation of host cytokine and chemokine genes, including the p19 subunit of interleukin-23. Consistent with this observation, the cellular immune response to infection was characterized by a prominent Th17 response to the wild-type pathogen. These findings define specific host mRNA responses to Hla-producing S. aureus, coupling the pulmonary Th17 response to the secretion of this cytotoxin. Expression profiling to define the host response to a single virulence factor proved to be a valuable tool in identifying pathways for further investigation in S. aureus pneumonia. This approach may be broadly applicable to the study of bacterial toxins, defining host pathways that can be targeted to mitigate toxin-induced disease.

摘要

金黄色葡萄球菌肺炎会导致较高的发病率和死亡率。α-溶血素(Hla)是金黄色葡萄球菌的一种成孔细胞毒素,已在肺炎动物模型中被确定为一种关键的毒力因子,可诱导肺部损伤。尽管人们对这种细胞毒素如何损伤宿主有了相当多的分子认识,但宿主对感染时 Hla 的确切反应仍知之甚少。我们采用感染肺部的全基因组表达谱分析,比较了野生型金黄色葡萄球菌与缺乏 Hla 的同基因突变体在实验性肺炎中的反应,以此来定义宿主对金黄色葡萄球菌的反应。这些数据在感染后 4 小时和 24 小时提供了完整的表达谱,揭示了对产毒菌株的独特反应。基因本体论分析显示,细胞外基质和心肌病途径存在显著差异,这两个途径都控制着组织微环境中的细胞相互作用。对表达 Hla 的葡萄球菌个体转录本反应的评估,值得注意的是宿主细胞因子和趋化因子基因的上调,包括白细胞介素-23 的 p19 亚基。与这一观察结果一致,对感染的细胞免疫反应的特征是对野生型病原体的强烈 Th17 反应。这些发现定义了宿主对产 Hla 的金黄色葡萄球菌的特定 mRNA 反应,将肺部 Th17 反应与这种细胞毒素的分泌联系起来。通过表达谱来定义宿主对单一毒力因子的反应被证明是一种有价值的工具,可用于确定金黄色葡萄球菌肺炎进一步研究的途径。这种方法可能广泛适用于细菌毒素的研究,确定可以靶向减轻毒素诱导疾病的宿主途径。

相似文献

1
Host response signature to Staphylococcus aureus alpha-hemolysin implicates pulmonary Th17 response.
Infect Immun. 2012 Sep;80(9):3161-9. doi: 10.1128/IAI.00191-12. Epub 2012 Jun 25.
3
Vaccine protection against Staphylococcus aureus pneumonia.
J Exp Med. 2008 Feb 18;205(2):287-94. doi: 10.1084/jem.20072208. Epub 2008 Feb 11.
4
The role of IL-27 in susceptibility to post-influenza Staphylococcus aureus pneumonia.
Respir Res. 2015 Feb 5;16(1):10. doi: 10.1186/s12931-015-0168-8.
5
Fosfomycin Protects Mice From Pneumonia Caused by α-Hemolysin in Extracellular Vesicles by Inhibiting MAPK-Regulated NLRP3 Inflammasomes.
Front Cell Infect Microbiol. 2019 Jul 15;9:253. doi: 10.3389/fcimb.2019.00253. eCollection 2019.
6
Tissue-specific patterning of host innate immune responses by Staphylococcus aureus α-toxin.
J Innate Immun. 2014;6(5):619-31. doi: 10.1159/000360006. Epub 2014 May 10.
7
An antidote for Staphylococcus aureus pneumonia?
J Exp Med. 2008 Feb 18;205(2):271-4. doi: 10.1084/jem.20080167. Epub 2008 Feb 11.
8
Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology.
Dis Model Mech. 2015 Nov;8(11):1413-25. doi: 10.1242/dmm.021923. Epub 2015 Sep 3.
9
Immunopathogenesis of Staphylococcus aureus pulmonary infection.
Semin Immunopathol. 2012 Mar;34(2):281-97. doi: 10.1007/s00281-011-0291-7. Epub 2011 Oct 31.

引用本文的文献

2
Gut-Lung Microbiota Interaction in COPD Patients: A Literature Review.
Medicina (Kaunas). 2022 Nov 30;58(12):1760. doi: 10.3390/medicina58121760.
3
IL-33-mediated Eosinophilia Protects against Acute Lung Injury.
Am J Respir Cell Mol Biol. 2021 May;64(5):569-578. doi: 10.1165/rcmb.2020-0166OC.
4
Co-infection of With Bacterial Pathobionts or Leads to Distinct Sinonasal Inflammatory Responses in a Murine Acute Sinusitis Model.
Front Cell Infect Microbiol. 2020 Sep 4;10:472. doi: 10.3389/fcimb.2020.00472. eCollection 2020.
5
Alpha-Toxin Limits Type 1 While Fostering Type 3 Immune Responses.
Front Immunol. 2020 Aug 7;11:1579. doi: 10.3389/fimmu.2020.01579. eCollection 2020.
6
Toxin-Triggered Interleukin-1 Receptor Signaling Enables Early-Life Discrimination of Pathogenic versus Commensal Skin Bacteria.
Cell Host Microbe. 2019 Dec 11;26(6):795-809.e5. doi: 10.1016/j.chom.2019.10.007. Epub 2019 Nov 26.
7
Messing with the Sentinels-The Interaction of with Dendritic Cells.
Microorganisms. 2018 Aug 15;6(3):87. doi: 10.3390/microorganisms6030087.
8
Surface Protein G is An Immunodominant Protein and a Possible Target in An Anti-Biofilm Drug Development.
Open Microbiol J. 2018 Apr 30;12:94-106. doi: 10.2174/1874285801812010094. eCollection 2018.
9
Host Nitric Oxide Disrupts Microbial Cell-to-Cell Communication to Inhibit Staphylococcal Virulence.
Cell Host Microbe. 2018 May 9;23(5):594-606.e7. doi: 10.1016/j.chom.2018.04.001.

本文引用的文献

1
Capsaicin protects mice from community-associated methicillin-resistant Staphylococcus aureus pneumonia.
PLoS One. 2012;7(3):e33032. doi: 10.1371/journal.pone.0033032. Epub 2012 Mar 12.
3
Phospholipid scramblase 1 mediates type i interferon-induced protection against staphylococcal α-toxin.
Cell Host Microbe. 2012 Jan 19;11(1):70-80. doi: 10.1016/j.chom.2011.12.004.
4
Th17 cells mediate clade-specific, serotype-independent mucosal immunity.
Immunity. 2011 Dec 23;35(6):997-1009. doi: 10.1016/j.immuni.2011.10.018.
5
Isoalantolactone protects against Staphylococcus aureus pneumonia.
FEMS Microbiol Lett. 2011 Nov;324(2):147-55. doi: 10.1111/j.1574-6968.2011.02397.x. Epub 2011 Sep 15.
6
Immunopathogenesis of Staphylococcus aureus pulmonary infection.
Semin Immunopathol. 2012 Mar;34(2):281-97. doi: 10.1007/s00281-011-0291-7. Epub 2011 Oct 31.
7
Interleukin-23-mediated inflammation in Pseudomonas aeruginosa pulmonary infection.
Infect Immun. 2012 Jan;80(1):398-409. doi: 10.1128/IAI.05821-11. Epub 2011 Oct 24.
8
Chrysin protects mice from Staphylococcus aureus pneumonia.
J Appl Microbiol. 2011 Dec;111(6):1551-8. doi: 10.1111/j.1365-2672.2011.05170.x. Epub 2011 Oct 31.
9
Deciphering the role of Th17 cells in human disease.
Trends Immunol. 2011 Dec;32(12):603-11. doi: 10.1016/j.it.2011.08.003. Epub 2011 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验