Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305, USA.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11127-32. doi: 10.1073/pnas.1205004109. Epub 2012 Jun 25.
We use isotachophoresis (ITP) to control and increase the rate of nucleic acid hybridization reactions in free solution. We present a new physical model, validation experiments, and demonstrations of this assay. We studied the coupled physicochemical processes of preconcentration, mixing, and chemical reaction kinetics under ITP. Our experimentally validated model enables a closed form solution for ITP-aided reaction kinetics, and reveals a new characteristic time scale which correctly predicts order 10,000-fold speed-up of chemical reaction rate for order 100 pM reactants, and greater enhancement at lower concentrations. At 500 pM concentration, we measured a reaction time which is 14,000-fold lower than that predicted for standard second-order hybridization. The model and method are generally applicable to acceleration of reactions involving nucleic acids, and may be applicable to a wide range of reactions involving ionic reactants.
我们使用等速电泳(ITP)来控制和提高游离溶液中核酸杂交反应的速率。我们提出了一个新的物理模型,对其进行了验证实验,并展示了该分析方法。我们研究了 ITP 下预浓缩、混合和化学反应动力学的耦合物理化学过程。我们经过实验验证的模型为 ITP 辅助反应动力学提供了封闭形式的解,并揭示了一个新的特征时间尺度,该尺度正确预测了反应物浓度为 100 pM 时反应速率提高 10,000 倍,而在较低浓度下则有更大的增强。在 500 pM 的浓度下,我们测量到的反应时间比标准二级杂交反应预测的时间低 14,000 倍。该模型和方法通常适用于加速涉及核酸的反应,并且可能适用于涉及离子反应物的广泛反应。