Suppr超能文献

突触巩固:从突触到行为建模。

Synaptic consolidation: from synapses to behavioral modeling.

机构信息

School of Computer and Communication Sciences and School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne EPFL, Switzerland.

School of Computer and Communication Sciences and School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne EPFL, Switzerland

出版信息

J Neurosci. 2015 Jan 21;35(3):1319-34. doi: 10.1523/JNEUROSCI.3989-14.2015.

Abstract

Synaptic plasticity, a key process for memory formation, manifests itself across different time scales ranging from a few seconds for plasticity induction up to hours or even years for consolidation and memory retention. We developed a three-layered model of synaptic consolidation that accounts for data across a large range of experimental conditions. Consolidation occurs in the model through the interaction of the synaptic efficacy with a scaffolding variable by a read-write process mediated by a tagging-related variable. Plasticity-inducing stimuli modify the efficacy, but the state of tag and scaffold can only change if a write protection mechanism is overcome. Our model makes a link from depotentiation protocols in vitro to behavioral results regarding the influence of novelty on inhibitory avoidance memory in rats.

摘要

突触可塑性是记忆形成的关键过程,其表现形式跨越不同的时间尺度,从几秒钟的可塑性诱导到数小时甚至数年的巩固和记忆保留。我们开发了一种三层突触巩固模型,该模型可以解释在广泛的实验条件下的数据。在模型中,通过标记相关变量介导的读写过程,突触效能与支架变量相互作用发生巩固。诱导可塑性的刺激会改变效能,但只有克服写入保护机制,标签和支架的状态才能改变。我们的模型将体外去极化方案与关于新奇性对大鼠抑制性回避记忆影响的行为结果联系起来。

相似文献

1
Synaptic consolidation: from synapses to behavioral modeling.突触巩固:从突触到行为建模。
J Neurosci. 2015 Jan 21;35(3):1319-34. doi: 10.1523/JNEUROSCI.3989-14.2015.
4
Fast Learning with Weak Synaptic Plasticity.基于弱突触可塑性的快速学习
J Neurosci. 2015 Sep 30;35(39):13351-62. doi: 10.1523/JNEUROSCI.0607-15.2015.
10
Synaptic plasticity: taming the beast.突触可塑性:驯服这头野兽。
Nat Neurosci. 2000 Nov;3 Suppl:1178-83. doi: 10.1038/81453.

引用本文的文献

5
Neurobiological Causal Models of Language Processing.语言处理的神经生物学因果模型
Neurobiol Lang (Camb). 2024 Apr 1;5(1):225-247. doi: 10.1162/nol_a_00133. eCollection 2024.
6
Attractor neural networks with double well synapses.具有双阱突触的吸引子神经网络。
PLoS Comput Biol. 2024 Feb 7;20(2):e1011354. doi: 10.1371/journal.pcbi.1011354. eCollection 2024 Feb.

本文引用的文献

1
Stochastic variational learning in recurrent spiking networks.递归尖峰网络中的随机变分学习。
Front Comput Neurosci. 2014 Apr 4;8:38. doi: 10.3389/fncom.2014.00038. eCollection 2014.
3
Creating a false memory in the hippocampus.在海马体中创造虚假记忆。
Science. 2013 Jul 26;341(6144):387-91. doi: 10.1126/science.1239073.
5
Behavioral tagging of extinction learning.行为标记灭绝学习。
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1071-6. doi: 10.1073/pnas.1220875110. Epub 2012 Dec 31.
8
The rise and fall of memory in a model of synaptic integration.记忆在突触整合模型中的兴衰。
Neural Comput. 2012 Oct;24(10):2604-54. doi: 10.1162/NECO_a_00335. Epub 2012 Jun 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验