Suppr超能文献

单时间点双报告基因荧光成像提高肿瘤对比度。

Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging.

机构信息

Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, USA.

出版信息

J Biomed Opt. 2012 Jun;17(6):066001. doi: 10.1117/1.JBO.17.6.066001.

Abstract

In this study, we demonstrate a method to quantify biomarker expression that uses an exogenous dual-reporter imaging approach to improve tumor signal detection. The uptake of two fluorophores, one nonspecific and one targeted to the epidermal growth factor receptor (EGFR), were imaged at 1 h in three types of xenograft tumors spanning a range of EGFR expression levels (n=6 in each group). Using this dual-reporter imaging methodology, tumor contrast-to-noise ratio was amplified by >6 times at 1 h postinjection and >2 times at 24 h. Furthermore, by as early as 20 min postinjection, the dual-reporter imaging signal in the tumor correlated significantly with a validated marker of receptor density (P<0.05, r=0.93). Dual-reporter imaging can improve sensitivity and specificity over conventional fluorescence imaging in applications such as fluorescence-guided surgery and directly approximates the receptor status of the tumor, a measure that could be used to inform choices of biological therapies.

摘要

在这项研究中,我们展示了一种定量生物标志物表达的方法,该方法使用外源性双报告成像方法来提高肿瘤信号检测的灵敏度。在三种异种移植肿瘤中,在 1 小时内对两种荧光团(一种非特异性的和一种靶向表皮生长因子受体 (EGFR) 的)进行成像,跨越一系列 EGFR 表达水平(每组 6 个)。使用这种双报告成像方法,在注射后 1 小时,肿瘤的对比噪声比放大了>6 倍,在 24 小时放大了>2 倍。此外,早在注射后 20 分钟,肿瘤中的双报告成像信号就与经过验证的受体密度标志物显著相关(P<0.05,r=0.93)。双报告成像在荧光引导手术等应用中比传统荧光成像具有更高的灵敏度和特异性,并且直接近似于肿瘤的受体状态,该测量值可用于告知生物治疗的选择。

相似文献

1
Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging.
J Biomed Opt. 2012 Jun;17(6):066001. doi: 10.1117/1.JBO.17.6.066001.
4
Live Imaging of Cell Invasion Using a Multicellular Spheroid Model and Light-Sheet Microscopy.
Adv Exp Med Biol. 2017;1035:155-161. doi: 10.1007/978-3-319-67358-5_11.
5
Noninvasive quantification of target availability during therapy using paired-agent fluorescence tomography.
Theranostics. 2020 Sep 14;10(24):11230-11243. doi: 10.7150/thno.45273. eCollection 2020.
7
In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging.
Mol Imaging Biol. 2012 Oct;14(5):584-92. doi: 10.1007/s11307-011-0534-y.
9
Fluorescence Lifetime-Based Tumor Contrast Enhancement Using an EGFR Antibody-Labeled Near-Infrared Fluorophore.
Clin Cancer Res. 2019 Nov 15;25(22):6653-6661. doi: 10.1158/1078-0432.CCR-19-1686. Epub 2019 Sep 3.
10
MRI-coupled fluorescence tomography quantifies EGFR activity in brain tumors.
Acad Radiol. 2010 Mar;17(3):271-6. doi: 10.1016/j.acra.2009.11.001.

引用本文的文献

1
Dynamic Tracking of Receptor Availability in Tumor Using Paired-Agent Imaging.
Mol Pharm. 2025 Jun 2;22(6):3142-3150. doi: 10.1021/acs.molpharmaceut.5c00060. Epub 2025 May 14.
2
single-cell therapeutic response imaging facilitated by the TRIPODD fluorescence imaging platform.
Theranostics. 2024 Apr 29;14(7):2816-2834. doi: 10.7150/thno.93256. eCollection 2024.
3
Quantitative pharmacokinetic and biodistribution studies for fluorescent imaging agents.
Biomed Opt Express. 2024 Feb 26;15(3):1861-1877. doi: 10.1364/BOE.504878. eCollection 2024 Mar 1.
4
Paired-agent imaging as a rapid margin screening method in Mohs micrographic surgery.
Front Oncol. 2023 Jun 22;13:1196517. doi: 10.3389/fonc.2023.1196517. eCollection 2023.
5
Fluorescence molecular optomic signatures improve identification of tumors in head and neck specimens.
Front Med Technol. 2023 Feb 15;5:1009638. doi: 10.3389/fmedt.2023.1009638. eCollection 2023.
6
Rapid and Quantitative Intraoperative Pathology-Assisted Surgery by Paired-Agent Imaging-Derived Confidence Map.
Mol Imaging Biol. 2023 Feb;25(1):190-202. doi: 10.1007/s11307-022-01780-8. Epub 2022 Oct 31.
7
Comparison of cRGDfK Peptide Probes with Appended Shielded Heptamethine Cyanine Dye () for Near Infrared Fluorescence Imaging of Cancer.
ACS Omega. 2021 Oct 30;6(44):30130-30139. doi: 10.1021/acsomega.1c04991. eCollection 2021 Nov 9.
8
9
10
TRIPODD: a Novel Fluorescence Imaging Platform for In Situ Quantification of Drug Distribution and Therapeutic Response.
Mol Imaging Biol. 2021 Oct;23(5):650-664. doi: 10.1007/s11307-021-01589-x. Epub 2021 Mar 9.

本文引用的文献

2
In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging.
Mol Imaging Biol. 2012 Oct;14(5):584-92. doi: 10.1007/s11307-011-0534-y.
6
Microdosing: current and the future.
Bioanalysis. 2010 Mar;2(3):509-17. doi: 10.4155/bio.09.177.
8
Review of Neurosurgical Fluorescence Imaging Methodologies.
IEEE J Sel Top Quantum Electron. 2010 May;16(3):493-505. doi: 10.1109/JSTQE.2009.2034541.
10
Imaging targeted-agent binding in vivo with two probes.
J Biomed Opt. 2010 May-Jun;15(3):030513. doi: 10.1117/1.3449109.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验