Suppr超能文献

姜黄素衍生物作为雄激素受体拮抗剂的三维定量构效关系(3D-QSAR)及对接研究

The three dimensional Quantitative Structure Activity Relationships (3D-QSAR) and docking studies of curcumin derivatives as androgen receptor antagonists.

作者信息

Xu Guanhong, Chu Yanyan, Jiang Nan, Yang Jing, Li Fei

机构信息

School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.

School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

出版信息

Int J Mol Sci. 2012;13(5):6138-6155. doi: 10.3390/ijms13056138. Epub 2012 May 18.

Abstract

Androgen receptor antagonists have been proved to be effective anti-prostate cancer agents. 3D-QSAR and Molecular docking methods were performed on curcumin derivatives as androgen receptor antagonists. The bioactive conformation was explored by docking the potent compound 29 into the binding site of AR. The constructed Comparative Molecular Field Analysis (CoMFA) and Comparative Similarity Indices Analysis (CoMSIA) models produced statistically significant results with the cross-validated correlation coefficients q(2) of 0.658 and 0.567, non-cross-validated correlation coefficients r(2) of 0.988 and 0.978, and predicted correction coefficients r(2) (pred) of 0.715 and 0.793, respectively. These results ensure the CoMFA and CoMSIA models as a tool to guide the design of novel potent AR antagonists. A set of 30 new analogs were proposed by utilizing the results revealed in the present study, and were predicted with potential activities in the developed models.

摘要

雄激素受体拮抗剂已被证明是有效的抗前列腺癌药物。对姜黄素衍生物作为雄激素受体拮抗剂进行了三维定量构效关系(3D-QSAR)和分子对接研究。通过将活性化合物29对接至雄激素受体(AR)的结合位点来探索其生物活性构象。构建的比较分子场分析(CoMFA)和比较相似性指数分析(CoMSIA)模型产生了具有统计学意义的结果,交叉验证相关系数q(2)分别为0.658和0.567,非交叉验证相关系数r(2)分别为0.988和0.978,预测校正系数r(2)(pred)分别为0.715和0.793。这些结果确保了CoMFA和CoMSIA模型可作为指导新型强效AR拮抗剂设计的工具。利用本研究揭示的结果提出了一组30个新的类似物,并在开发的模型中预测了它们的潜在活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea5a/3382773/dc7d8d54ca3c/ijms-13-06138f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验