Suppr超能文献

使用散热器控制 DBS 电极温度:DBS 导联结构的实验验证有限元模型。

Temperature control at DBS electrodes using a heat sink: experimentally validated FEM model of DBS lead architecture.

机构信息

Department of Biomedical Engineering, The City College of New York of The City University of New York, NY, USA.

出版信息

J Neural Eng. 2012 Aug;9(4):046009. doi: 10.1088/1741-2560/9/4/046009. Epub 2012 Jul 4.

Abstract

There is a growing interest in the use of deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or coupling with an external source (e.g. magnetic resonance imaging) remains poorly understood and methods to mitigate temperature increases are being actively investigated. We developed a heat transfer finite element method (FEM) simulation of DBS incorporating the realistic architecture of Medtronic 3389 leads. The temperature changes were analyzed considering different electrode configurations, stimulation protocols and tissue properties. The heat-transfer model results were then validated using micro-thermocouple measurements during DBS lead stimulation in a saline bath. FEM results indicate that lead design (materials and geometry) may have a central role in controlling temperature rise by conducting heat. We show how modifying lead design can effectively control temperature increases. The robustness of this heat-sink approach over complimentary heat-mitigation technologies follows from several features: (1) it is insensitive to the mechanisms of heating (e.g. nature of magnetic coupling); (2) it does not interfere with device efficacy; and (3) can be practically implemented in a broad range of implanted devices without modifying the normal device operations or the implant procedure.

摘要

人们越来越关注深部脑刺激(DBS)在治疗药物难治性运动障碍及其他神经和精神疾病方面的应用。在正常运行(焦耳加热和代谢活动增加)或与外部源耦合(例如磁共振成像)期间,DBS 电极周围的温升程度仍了解甚少,正在积极研究减轻温升的方法。我们开发了一种包含 Medtronic 3389 导联的真实结构的 DBS 热传递有限元方法(FEM)模拟。考虑到不同的电极配置、刺激方案和组织特性,分析了温度变化。然后使用微热电偶在盐水浴中进行 DBS 导联刺激时对热传递模型结果进行了验证。FEM 结果表明,通过传导热量,导联设计(材料和几何形状)可能在控制温升方面起着核心作用。我们展示了如何通过修改导联设计来有效控制温升。这种散热器方法的鲁棒性优于互补的热缓解技术,原因有几个:(1)它对加热机制不敏感(例如磁耦合的性质);(2)它不干扰设备的功效;(3)可以在广泛的植入设备中实际实现,而无需修改正常设备操作或植入程序。

相似文献

10
Sources and effects of electrode impedance during deep brain stimulation.脑深部电刺激期间电极阻抗的来源及影响
Clin Neurophysiol. 2006 Feb;117(2):447-54. doi: 10.1016/j.clinph.2005.10.007. Epub 2005 Dec 22.

引用本文的文献

2
Bioheat Model of Spinal Column Heating During High-Density Spinal Cord Stimulation.脊柱高密度脊髓刺激加热的生物热模型。
Neuromodulation. 2023 Oct;26(7):1362-1370. doi: 10.1016/j.neurom.2022.07.006. Epub 2022 Aug 25.

本文引用的文献

1
Diamond penetrating electrode array for epi-retinal prosthesis.用于视网膜上假体的金刚石穿透电极阵列。
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6757-60. doi: 10.1109/IEMBS.2010.5626003.
8
MRI-induced heating of deep brain stimulation leads.磁共振成像诱导的深部脑刺激导线发热
Phys Med Biol. 2008 Oct 21;53(20):5745-56. doi: 10.1088/0031-9155/53/20/012. Epub 2008 Sep 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验