Biophysics Graduate Group, University of California San Francisco, San Francisco, California, United States of America.
PLoS One. 2012;7(6):e39052. doi: 10.1371/journal.pone.0039052. Epub 2012 Jun 29.
We model the evolution of eukaryotic protein-protein interaction (PPI) networks. In our model, PPI networks evolve by two known biological mechanisms: (1) Gene duplication, which is followed by rapid diversification of duplicate interactions. (2) Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the target protein's neighborhood. We find good agreement of the model on 10 different network properties compared to high-confidence experimental PPI networks in yeast, fruit flies, and humans. Key findings are: (1) PPI networks evolve modular structures, with no need to invoke particular selection pressures. (2) Proteins in cells have on average about 6 degrees of separation, similar to some social networks, such as human-communication and actor networks. (3) Unlike social networks, which have a shrinking diameter (degree of maximum separation) over time, PPI networks are predicted to grow in diameter. (4) The model indicates that evolutionarily old proteins should have higher connectivities and be more centrally embedded in their networks. This suggests a way in which present-day proteomics data could provide insights into biological evolution.
我们构建了真核生物蛋白质-蛋白质相互作用(PPI)网络的演化模型。在我们的模型中,PPI 网络的进化由两种已知的生物学机制驱动:(1)基因复制,随后是复制相互作用的快速多样化。(2)新功能化,其中突变导致与其他蛋白质的新相互作用。由于许多相互作用是由于简单的表面兼容性,我们假设与靶蛋白的邻近区域中的其他蛋白质相互作用的可能性增加。与酵母、果蝇和人类中的高可信度实验 PPI 网络相比,我们的模型在 10 种不同的网络特性上表现出很好的一致性。主要发现有:(1)PPI 网络进化出模块化结构,无需特别的选择压力。(2)细胞中的蛋白质平均具有约 6 度的分离度,类似于一些社交网络,如人类交流和演员网络。(3)与社交网络不同,随着时间的推移,社交网络的直径(最大分离度)不断缩小,而 PPI 网络预计会增大直径。(4)该模型表明,进化上古老的蛋白质应该具有更高的连接度,并且在网络中处于更中心的位置。这为当前的蛋白质组学数据如何提供对生物进化的深入了解提供了一种方法。