Suppr超能文献

用于基因递送的纳米颗粒的触发式快速降解。

Triggered rapid degradation of nanoparticles for gene delivery.

作者信息

Morachis José M, Mahmoud Enas A, Sankaranarayanan Jagadis, Almutairi Adah

机构信息

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Drive, MC 0600 La Jolla, CA 92093-0657, USA.

出版信息

J Drug Deliv. 2012;2012:291219. doi: 10.1155/2012/291219. Epub 2012 Jun 19.

Abstract

Effective gene delivery tools offer the possibility of addressing multiple diseases; current strategies rely on viruses or polyplexes. Encapsulation of DNA within nanoparticles is an attractive alternative method for gene delivery. We investigated the use of our recently developed Logic Gate Nanoparticle for gene delivery. The nanoparticles, composed of a dual pH response random copolymer (poly-β-aminoester ketal-2), can undergo a two-step "in series" response to endosomal pH. The first sep is a hydrophobic-hydrophilic switch, which is followed immediately by rapid degradation. Rapid fragmentation is known to increase cytoplasmic delivery from nanoparticles. Therefore, we hypothesized that our Logic Gate Nanoparticles would enable increased gene delivery and expression relative to nanoparticles that degrade more slowly such as PLGA-based nanoparticles. Passive nanoparticle entry into cells was demonstrated by delivering Cy5-labeled pDNA encoding EGFP into HCT116, a colon carcinoma cell line. Flow cytometry analysis showed that cells are positive for Cy5-DNA-nanoparticles and produced EGFP expression superior to PLGA nanoparticles. Inhibition of V-ATPases using bafilomycin A1 demonstrates that expression of EGFP is dependent on low endosomal pH. The advanced Logic Gate Nanoparticles offer new therapeutic possibilities in gene delivery and other applications where rapid release is important.

摘要

有效的基因传递工具为治疗多种疾病提供了可能;目前的策略依赖于病毒或多聚体。将DNA包裹在纳米颗粒内是一种有吸引力的基因传递替代方法。我们研究了最近开发的逻辑门纳米颗粒用于基因传递的情况。这些纳米颗粒由双pH响应随机共聚物(聚-β-氨基酯缩酮-2)组成,可对内体pH值进行两步“串联”响应。第一步是疏水-亲水转换,随后立即快速降解。已知快速碎片化可增加纳米颗粒向细胞质的递送。因此,我们推测,相对于降解较慢的纳米颗粒(如基于聚乳酸-羟基乙酸共聚物的纳米颗粒),我们的逻辑门纳米颗粒将能够提高基因传递和表达。通过将编码增强绿色荧光蛋白(EGFP)的Cy5标记的质粒DNA递送至结肠癌细胞系HCT116,证明了纳米颗粒可被动进入细胞。流式细胞术分析表明,细胞对Cy5-DNA-纳米颗粒呈阳性,并且产生的EGFP表达优于聚乳酸-羟基乙酸共聚物纳米颗粒。使用巴弗洛霉素A1抑制V-ATP酶表明,EGFP的表达依赖于低内体pH值。先进的逻辑门纳米颗粒在基因传递以及其他快速释放很重要的应用中提供了新的治疗可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验