Liu Hongfang, Wagholikar Kavishwar, Wu Stephen Tze-Inn
Department of Health Sciences Research Mayo Clinic College of Medicine, Rochester, MN.
AMIA Jt Summits Transl Sci Proc. 2012;2012:30-7. Epub 2012 Mar 19.
Extracting and encoding clinical information captured in free text with standard medical terminologies is vital to enable secondary use of electronic medical records (EMRs) for clinical decision support, improved patient safety, and clinical/translational research. A critical portion of free text is comprised of 'summary level' information in the form of problem lists, diagnoses and reasons of visit. We conducted a systematic analysis of SNOMED-CT in representing the summary level information utilizing a large collection of summary level data in the form of itemized entries. Results indicate that about 80% of the entries can be encoded with SNOMED-CT normalized phrases. When tolerating one unmapped token, 96% of the itemized entries can be encoded with SNOMED-CT concepts. The study provides a solid foundation for developing an automated system to encode summary level data using SNOMED-CT.
使用标准医学术语提取并编码自由文本中捕获的临床信息,对于实现电子病历(EMR)的二次利用以支持临床决策、提高患者安全性以及开展临床/转化研究至关重要。自由文本的一个关键部分由问题列表、诊断以及就诊原因等形式的“总结级别”信息组成。我们利用大量以逐条记录形式呈现的总结级别数据,对SNOMED-CT在表示总结级别信息方面进行了系统分析。结果表明,约80%的记录可以用SNOMED-CT标准化短语进行编码。若容忍一个未映射的词元,则96%的逐条记录可以用SNOMED-CT概念进行编码。该研究为开发一个使用SNOMED-CT对总结级别数据进行编码的自动化系统奠定了坚实基础。