Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
Photosynth Res. 2012 Sep;113(1-3):181-9. doi: 10.1007/s11120-012-9762-5. Epub 2012 Jul 13.
Carbon export from leaf mesophyll to sugar-transporting phloem occurs via either an apoplastic (across the cell membrane) or symplastic (through plasmodesmatal cell wall openings) pathway. Herbaceous apoplastic loaders generally exhibit an up-regulation of photosynthetic capacity in response to growth at lower temperature. However, acclimation of photosynthesis to temperature by symplastically loading species, whose geographic distribution is particularly strong in tropical and subtropical areas, has not been characterized. Photosynthetic and leaf anatomical acclimation to lower temperature was explored in two symplastic (Verbascum phoeniceum, Cucurbita pepo) and two apoplastic (Helianthus annuus, Spinacia oleracea) loaders, representing summer- and winter-active life histories for each loading type. Regardless of phloem loading type, the two summer-active species, C. pepo and H. annuus, exhibited neither foliar anatomical nor photosynthetic acclimation when grown under low temperature compared to moderate temperature. In contrast, and again irrespective of phloem loading type, the two winter-active mesophytes, V. phoeniceum and S. oleracea, exhibited both a greater number of palisade cell layers (and thus thicker leaves) and significantly higher maximal capacities of photosynthetic electron transport, as well as, in the case of V. phoeniceum, a greater foliar vein density in response to cool temperatures compared to growth at moderate temperature. It is therefore noteworthy that symplastic phloem loading per se does not prevent acclimation of intrinsic photosynthetic capacity to cooler growth temperatures. Given the vagaries of weather and climate, understanding the basis of plant acclimation to, and tolerance of, low temperature is critical to maintaining and increasing plant productivity for food, fuel, and fiber to meet the growing demands of a burgeoning human population.
叶片叶肉中的碳通过质外体(穿过细胞膜)或共质体(通过胞间连丝细胞壁开口)途径输出到糖转运韧皮部。草本质外体装载器通常会在较低温度下生长时上调光合作用能力。然而,通过共质体装载来适应温度的光合作用,其地理分布在热带和亚热带地区尤为强烈,尚未得到表征。通过两种共质体(Verbascum phoeniceum,Cucurbita pepo)和两种质外体(Helianthus annuus,Spinacia oleracea)装载器研究了光合作用和叶片解剖结构对低温的适应,这两种装载器分别代表了每种装载类型的夏季和冬季活跃的生活史。无论韧皮部装载类型如何,与中温相比,两种夏季活跃的物种,C. pepo 和 H. annuus,在低温下既没有叶片解剖结构也没有光合作用适应。相比之下,并且再次与韧皮部装载类型无关,两种冬季活跃的中生植物,V. phoeniceum 和 S. oleracea,在低温下表现出更多的栅栏细胞层(因此叶片更厚)和更高的光合作用电子传递最大能力,并且在 V. phoeniceum 的情况下,与在中温下生长相比,叶片叶脉密度更大。因此,值得注意的是,共质体韧皮部装载本身并不能防止内在光合作用能力对较凉爽生长温度的适应。考虑到天气和气候的变幻莫测,了解植物对低温的适应和耐受的基础对于维持和增加植物的生产力以满足不断增长的人口对粮食、燃料和纤维的需求至关重要。