Suppr超能文献

可压缩流图像配准的局部最优点匹配最小中位数滤波。

Least median of squares filtering of locally optimal point matches for compressible flow image registration.

机构信息

Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Phys Med Biol. 2012 Aug 7;57(15):4827-33. doi: 10.1088/0031-9155/57/15/4827. Epub 2012 Jul 13.

Abstract

Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration.

摘要

基于可压缩流的图像配准假设在从一张图像到下一张图像的过程中,成像物质的质量是守恒的。根据质量守恒假设的建模方式,现有的可压缩流方法的性能受到图像质量、噪声、大的体素位移和计算要求等因素的限制。这里引入的最小中位数平方滤波可压缩流 (LFC) 方法基于局部非线性最小二乘可压缩流模型,该模型描述了单个体素的位移,适合简单的网格搜索(块匹配)优化策略。通过基于最小中位数平方拟合和前向搜索异常值检测方法的新颖滤波方法,可以去除空间不准确的网格搜索点匹配,这些匹配对应于非线性可压缩流模型的错误局部最小值。该方法的空间精度使用十个胸部 CT 图像集和大量专家确定的地标(可在 www.dir-lab.com 上获得)进行测量。LFC 方法在十个病例中的八个病例中产生了观察者内误差内的平均误差,表明该方法能够实现胸部 CT 配准的高空间精度。

相似文献

引用本文的文献

10
Characterizing Spatial Lung Function for Esophageal Cancer Patients Undergoing Radiation Therapy.描述接受放射治疗的食管癌患者的肺部空间功能。
Int J Radiat Oncol Biol Phys. 2019 Mar 1;103(3):738-746. doi: 10.1016/j.ijrobp.2018.10.024. Epub 2018 Oct 26.

本文引用的文献

3
GPU computing for systems biology.GPU 计算在系统生物学中的应用。
Brief Bioinform. 2010 May;11(3):323-33. doi: 10.1093/bib/bbq006. Epub 2010 Mar 7.
6
The role of image registration in brain mapping.图像配准在脑图谱绘制中的作用。
Image Vis Comput. 2001 Jan 1;19(1-2):3-24. doi: 10.1016/S0262-8856(00)00055-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验