Suppr超能文献

基于轨迹建模的四维形变图像配准

Four-dimensional deformable image registration using trajectory modeling.

机构信息

Division of Radiation Oncology, The University of Texas M D Anderson Cancer Center, Houston, TX, USA.

出版信息

Phys Med Biol. 2010 Jan 7;55(1):305-27. doi: 10.1088/0031-9155/55/1/018.

Abstract

A four-dimensional deformable image registration (4D DIR) algorithm, referred to as 4D local trajectory modeling (4DLTM), is presented and applied to thoracic 4D computed tomography (4DCT) image sets. The theoretical framework on which this algorithm is built exploits the incremental continuity present in 4DCT component images to calculate a dense set of parameterized voxel trajectories through space as functions of time. The spatial accuracy of the 4DLTM algorithm is compared with an alternative registration approach in which component phase to phase (CPP) DIR is utilized to determine the full displacement between maximum inhale and exhale images. A publically available DIR reference database (http://www.dir-lab.com) is utilized for the spatial accuracy assessment. The database consists of ten 4DCT image sets and corresponding manually identified landmark points between the maximum phases. A subset of points are propagated through the expiratory 4DCT component images. Cubic polynomials were found to provide sufficient flexibility and spatial accuracy for describing the point trajectories through the expiratory phases. The resulting average spatial error between the maximum phases was 1.25 mm for the 4DLTM and 1.44 mm for the CPP. The 4DLTM method captures the long-range motion between 4DCT extremes with high spatial accuracy.

摘要

提出并应用于胸部 4DCT 图像集的一种四维形变图像配准(4D DIR)算法,称为 4D 局部轨迹建模(4DLTM)。该算法所基于的理论框架利用 4DCT 分量图像中的增量连续性,计算出一组密集的参数化体素轨迹,这些轨迹作为时间的函数通过空间。4DLTM 算法的空间精度与另一种配准方法进行了比较,该方法利用相位到相位(CPP)DIR 来确定最大吸气和呼气图像之间的完全位移。利用一个公共的 DIR 参考数据库(http://www.dir-lab.com)进行空间精度评估。该数据库包含十个 4DCT 图像集和最大相位之间的手动识别地标点。将一部分点传播到呼气 4DCT 分量图像中。发现三次多项式可以提供足够的灵活性和空间精度来描述通过呼气阶段的点轨迹。4DLTM 和 CPP 的最大相位之间的平均空间误差分别为 1.25mm 和 1.44mm。4DLTM 方法以高精度捕捉 4DCT 极值之间的长程运动。

相似文献

1
Four-dimensional deformable image registration using trajectory modeling.
Phys Med Biol. 2010 Jan 7;55(1):305-27. doi: 10.1088/0031-9155/55/1/018.
2
Robust CT ventilation from the integral formulation of the Jacobian.
Med Phys. 2019 May;46(5):2115-2125. doi: 10.1002/mp.13453. Epub 2019 Mar 22.
3
Quadratic penalty method for intensity-based deformable image registration and 4DCT lung motion recovery.
Med Phys. 2019 May;46(5):2194-2203. doi: 10.1002/mp.13457. Epub 2019 Mar 14.
4
Robust HU-based CT ventilation from an integrated mass conservation formulation.
Med Phys. 2019 Nov;46(11):5036-5046. doi: 10.1002/mp.13817. Epub 2019 Sep 28.
8
A hybrid biomechanical intensity based deformable image registration of lung 4DCT.
Phys Med Biol. 2015 Apr 21;60(8):3359-73. doi: 10.1088/0031-9155/60/8/3359. Epub 2015 Apr 1.
9
Multi-institutional Validation Study of Commercially Available Deformable Image Registration Software for Thoracic Images.
Int J Radiat Oncol Biol Phys. 2016 Oct 1;96(2):422-431. doi: 10.1016/j.ijrobp.2016.05.012. Epub 2016 May 19.
10
Representing the dosimetric impact of deformable image registration errors.
Phys Med Biol. 2017 Aug 11;62(17):N391-N403. doi: 10.1088/1361-6560/aa8133.

引用本文的文献

2
The bone rigidity error as a simple, quantitative, and interpretable metric for patient-specific validation of deformable image registration.
Phys Imaging Radiat Oncol. 2025 Apr 23;34:100767. doi: 10.1016/j.phro.2025.100767. eCollection 2025 Apr.
3
Benchmarking and performance evaluation of a novel deformable image registration software for radiotherapy CT images.
Tech Innov Patient Support Radiat Oncol. 2024 Nov 26;32:100295. doi: 10.1016/j.tipsro.2024.100295. eCollection 2024 Dec.
4
A survey on deep learning in medical image registration: New technologies, uncertainty, evaluation metrics, and beyond.
Med Image Anal. 2025 Feb;100:103385. doi: 10.1016/j.media.2024.103385. Epub 2024 Nov 10.
5
4DCT image artifact detection using deep learning.
Med Phys. 2025 Feb;52(2):1096-1107. doi: 10.1002/mp.17513. Epub 2024 Nov 14.
6
Pulmonary CT Registration Network Based on Deformable Cross Attention.
J Imaging Inform Med. 2025 Aug;38(4):1963-1975. doi: 10.1007/s10278-024-01324-2. Epub 2024 Nov 11.
7
A vessel bifurcation liver CT landmark pair dataset for evaluating deformable image registration algorithms.
Med Phys. 2025 Jan;52(1):703-715. doi: 10.1002/mp.17507. Epub 2024 Nov 6.
8
Deformable lung 4DCT image registration via landmark-driven cycle network.
Med Phys. 2024 Mar;51(3):1974-1984. doi: 10.1002/mp.16738. Epub 2023 Sep 14.
9
Integration of operator-validated contours in deformable image registration for dose accumulation in radiotherapy.
Phys Imaging Radiat Oncol. 2023 Aug 20;27:100483. doi: 10.1016/j.phro.2023.100483. eCollection 2023 Jul.

本文引用的文献

1
Estimating Myocardial Motion by 4D Image Warping.
Pattern Recognit. 2009 Nov 1;42(11):2514-2526. doi: 10.1016/j.patcog.2009.04.022.
2
Fast convolution-superposition dose calculation on graphics hardware.
Med Phys. 2009 Jun;36(6):1998-2005. doi: 10.1118/1.3120286.
3
A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets.
Phys Med Biol. 2009 Apr 7;54(7):1849-70. doi: 10.1088/0031-9155/54/7/001. Epub 2009 Mar 5.
5
Combination of intensity-based image registration with 3D simulation in radiation therapy.
Phys Med Biol. 2008 Sep 7;53(17):4621-37. doi: 10.1088/0031-9155/53/17/011. Epub 2008 Aug 11.
7
Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation.
Med Image Anal. 2008 Dec;12(6):752-63. doi: 10.1016/j.media.2008.03.007. Epub 2008 Apr 12.
8
Quality assurance of serial 3D image registration, fusion, and segmentation.
Int J Radiat Oncol Biol Phys. 2008;71(1 Suppl):S33-7. doi: 10.1016/j.ijrobp.2007.06.087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验