Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany.
J Comput Chem. 2013 Oct 15;34(27):2389-97. doi: 10.1002/jcc.23403. Epub 2013 Aug 1.
We report systematic quantum mechanics-only (QM-only) and QM/molecular mechanics (MM) calculations on an enzyme-catalyzed reaction to assess the convergence behavior of QM-only and QM/MM energies with respect to the size of the chosen QM region. The QM and MM parts are described by density functional theory (typically B3LYP/def2-SVP) and the CHARMM force field, respectively. Extending our previous work on acetylene hydratase with QM regions up to 157 atoms (Liao and Thiel, J. Chem. Theory Comput. 2012, 8, 3793), we performed QM/MM geometry optimizations with a QM region M4 composed of 408 atoms, as well as further QM/MM single-point calculations with even larger QM regions up to 657 atoms. A charge deletion analysis was conducted for the previously used QM/MM model (M3a, with a QM region of 157 atoms) to identify all MM residues with strong electrostatic contributions to the reaction energetics (typically more than 2 kcal/mol), which were then included in M4. QM/MM calculations with this large QM region M4 lead to the same overall mechanism as the previous QM/MM calculations with M3a, but there are some variations in the relative energies of the stationary points, with a mean absolute deviation (MAD) of 2.7 kcal/mol. The energies of the two relevant transition states are close to each other at all levels applied (typically within 2 kcal/mol), with the first (second) one being rate-limiting in the QM/MM calculations with M3a (M4). QM-only gas-phase calculations give a very similar energy profile for QM region M4 (MAD of 1.7 kcal/mol), contrary to the situation for M3a where we had previously found significant discrepancies between the QM-only and QM/MM results (MAD of 7.9 kcal/mol). Extension of the QM region beyond M4 up to M7 (657 atoms) leads to only rather small variations in the relative energies from single-point QM-only and QM/MM calculations (MAD typically about 1-2 kcal/mol). In the case of acetylene hydratase, a model with 408 QM atoms thus seems sufficient to achieve convergence in the computed relative energies to within 1-2 kcal/mol.
我们报告了一种酶催化反应的系统量子力学(QM)仅计算和 QM/分子力学(MM)计算,以评估 QM 仅和 QM/MM 能量随所选 QM 区域大小的收敛行为。QM 和 MM 部分分别由密度泛函理论(通常为 B3LYP/def2-SVP)和 CHARMM 力场描述。在我们之前关于乙炔水合酶的工作的基础上,我们使用包含 408 个原子的 QM 区域 M4 进行了 QM/MM 几何优化,并且还使用更大的 QM 区域(多达 657 个原子)进行了进一步的 QM/MM 单点计算。对之前使用的 QM/MM 模型(M3a,QM 区域为 157 个原子)进行了电荷删除分析,以确定对反应能学有强烈静电贡献的所有 MM 残基(通常超过 2 kcal/mol),然后将这些残基包含在 M4 中。使用这个大的 QM 区域 M4 的 QM/MM 计算导致与之前使用 M3a 的 QM/MM 计算相同的整体机制,但在稳定点的相对能量方面存在一些变化,平均绝对偏差(MAD)为 2.7 kcal/mol。在所应用的所有水平上,两个相关过渡态的能量都非常接近(通常在 2 kcal/mol 以内),在 QM/MM 计算中,第一个(第二个)是 M3a(M4)中限速的。QM 仅气相计算给出了 QM 区域 M4 的非常相似的能量分布(MAD 为 1.7 kcal/mol),而对于 M3a 则相反,我们之前发现 QM 仅和 QM/MM 结果之间存在显着差异(MAD 为 7.9 kcal/mol)。将 QM 区域从 M4 扩展到 M7(657 个原子)仅导致单点 QM 仅和 QM/MM 计算的相对能量的微小变化(MAD 通常约为 1-2 kcal/mol)。在乙炔水合酶的情况下,具有 408 QM 原子的模型似乎足以使计算的相对能量收敛到 1-2 kcal/mol 以内。