Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
J Am Chem Soc. 2012 Aug 15;134(32):13148-51. doi: 10.1021/ja302447r. Epub 2012 Aug 1.
Three-dimensional (3D) DNA nanostructures have shown great promise for various applications including molecular sensing and therapeutics. Here we report kinetic studies of DNA-mediated charge transport (CT) within a 3D DNA nanostructure framework. A tetrahedral DNA nanostructure was used to investigate the through-duplex and through-space CT of small redox molecules (methylene blue (MB) and ferrocene (Fc)) that were bound to specific positions above the surface of the gold electrode. CT rate measurements provide unambiguous evidence that the intercalative MB probe undergoes efficient mediated CT over longer distances along the duplex, whereas the nonintercalative Fc probe tunnels electrons through the space. This study sheds new light on DNA-based molecular electronics and on designing high-performance biosensor devices.
三维 (3D) DNA 纳米结构在分子传感和治疗等各种应用中显示出巨大的潜力。在这里,我们报告了在 3D DNA 纳米结构框架内进行 DNA 介导的电荷传输 (CT) 的动力学研究。我们使用四面体 DNA 纳米结构来研究小分子氧化还原分子(亚甲基蓝 (MB) 和二茂铁 (Fc))在金电极表面上方特定位置结合时的通过双链和通过空间的 CT。CT 速率测量提供了明确的证据,表明嵌入的 MB 探针在双链体上沿着更长的距离进行有效的介体 CT,而非嵌入的 Fc 探针通过空间隧道电子。这项研究为基于 DNA 的分子电子学和设计高性能生物传感器设备提供了新的思路。