Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
Langmuir. 2012 Aug 14;28(32):11866-73. doi: 10.1021/la301888p. Epub 2012 Jul 31.
The purified photosynthetic reaction center protein (RC) from Rhodobacter sphaeroides R-26 purple bacteria was bound to porous silicon microcavities (PSiMc) either through silane-glutaraldehyde (GTA) chemistry or via a noncovalent peptide cross-linker. The characteristic resonance mode in the microcavity reflectivity spectrum red shifted by several nanometers upon RC binding, indicating the protein infiltration into the porous silicon (PSi) photonic structure. Flash photolysis experiments confirmed the photochemical activity of RC after its binding to the solid substrate. The kinetic components of the intraprotein charge recombination were considerably faster (τ(fast) = 14 (±9) ms, τ(slow) = 230 (±28) ms with the RC bound through the GTA cross-linker and only τ(fast) = 27 (±3) ms through peptide coating) than in solution (τ(fast) = 120 (±3) ms, τ(slow) = 1387 (±2) ms), indicating the effect of the PSi surface on the light-induced electron transfer in the protein. The PSi/RC complex was found to oxidize the externally added electron donor, mammalian cytochrome c, and the cytochrome oxidation was blocked by the competitive RC inhibitor, terbutryne. This fact indicates that the specific surface binding sites on the PSi-bound RC are still accessible to external cofactors and an electronic interaction with redox components in the aqueous environment is possible. This new type of biophotonic material is considered to be an excellent model for new generation applications at the interface of silicon-based electronics and biological redox systems designed by nature.
从球形红杆菌 R-26 紫色细菌中纯化的光合反应中心蛋白 (RC) 通过硅烷-戊二醛 (GTA) 化学或通过非共价肽交联剂结合到多孔硅微腔 (PSiMc) 中。RC 结合后,微腔反射率光谱中的特征共振模式红移了几个纳米,表明蛋白质渗透到多孔硅 (PSi) 光子结构中。闪光光解实验证实了 RC 在与固体基底结合后的光化学活性。与通过 GTA 交联剂结合的 RC 相比,蛋白质内电荷复合的动力学组分快得多(τ(fast) = 14 (±9) ms,τ(slow) = 230 (±28) ms,通过肽涂层仅为 τ(fast) = 27 (±3) ms)在溶液中(τ(fast) = 120 (±3) ms,τ(slow) = 1387 (±2) ms),表明 PSi 表面对蛋白质中光诱导电子转移的影响。发现 PSi/RC 复合物可氧化外加的电子供体,哺乳动物细胞色素 c,并且 RC 抑制剂特布他林可阻断细胞色素氧化。这一事实表明,PSi 结合的 RC 上的特定表面结合位点仍然可用于外部辅助因子,并且与水相环境中的氧化还原组分进行电子相互作用是可能的。这种新型的生物光子材料被认为是新一代应用在基于硅的电子学和天然设计的生物氧化还原系统的界面的极好模型。