Suppr超能文献

基于分子印迹电化学合成邻氨基苯硫酚薄膜的电化学传感器快速测定莱克多巴胺

An electrochemical sensor for rapid determination of ractopamine based on a molecularly imprinted electrosynthesized o-aminothiophenol film.

机构信息

Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China.

出版信息

Anal Bioanal Chem. 2012 Oct;404(6-7):1653-60. doi: 10.1007/s00216-012-6253-7. Epub 2012 Jul 23.

Abstract

A simple electrochemical sensor based on a molecularly imprinted polymer film as the recognition element was developed for ractopamine (RAC) detection. This is the first report of a RAC-imprinted film on a gold electrode surface, synthesized through an electrochemical method using o-aminothiophenol as the functional monomer. The imprinting mechanism and experimental parameters affecting the capability of the imprinted film are discussed here. The sensor was successfully applied with constant potential amperometry for RAC detection in an indirect process with potassium ferricyanide as an electrochemical probe. The sensor had a rapid equilibrium time (120 s), high binding affinity and selectivity towards RAC, and with good reproducibility and stability. Under the experimental conditions applied, a linear relationship between the relative amperometric response and RAC ranged from 2.0 × 10(-7) to 1.4 × 10(-6) mol L(-1), with a lower limit of detection (LOD) of 2.38 × 10(-8) mol L(-1) (signal to noise ratio = 3). The sensor was tested with feed samples spiked with trace amounts of RAC, with good recoveries between 87.4 and 90.5 %.

摘要

基于分子印迹聚合物膜作为识别元件的简单电化学传感器被开发用于检测莱克多巴胺(RAC)。这是在金电极表面上合成 RAC 印迹膜的第一份报告,该膜通过电化学方法使用邻氨基酚作为功能单体合成。本文讨论了印迹机制和影响印迹膜性能的实验参数。该传感器成功地应用于恒电位安培法,通过以铁氰化钾作为电化学探针的间接过程来检测 RAC。该传感器具有快速的平衡时间(120 s)、对 RAC 的高结合亲和力和选择性,以及良好的重现性和稳定性。在应用的实验条件下,相对安培响应与 RAC 之间呈线性关系,范围从 2.0×10(-7)到 1.4×10(-6) mol L(-1),检测限(LOD)为 2.38×10(-8) mol L(-1)(信噪比=3)。该传感器用于检测含有痕量 RAC 的饲料样品,回收率在 87.4%至 90.5%之间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验