Suppr超能文献

生物现实基因调控网络模型中的资源和能源管理的演变。

Evolution of resource and energy management in biologically realistic gene regulatory network models.

机构信息

School of Biosciences, University of Nottingham, Leicestershire, UK.

出版信息

Adv Exp Med Biol. 2012;751:301-28. doi: 10.1007/978-1-4614-3567-9_14.

Abstract

We describe the use of computational models of evolution of artificial gene regulatory networks to understand the topologies of biological gene regulatory networks. We summarize results from three complementary approaches that explicitly represent biological processes of transcription, translation, metabolism and gene regulation: a fine-grained model that allows detailed molecular interactions, a coarse-grained model that allows rapid evolution of many generations, and a fixed-architecture model that allows for comparison of different hypotheses. In the first two cases, we are able to evolve networks towards the biological fitness objectives of survival and reproduction. A theme that emerges is that the control of cell energy and resources is a major driver of gene network topology and function. This is demonstrated in the fine-grained model with the emergence of biologically realistic mRNA and protein turnover rates that optimize energy usage and cell division time, and the evolution of basic repressor activities; in the fixed architecture model with a negative self-regulating gene evolving major efficiencies in mRNA usage; and in the coarse-grained model by the need for the inclusion of basal gene expression to obtain biologically plausible networks and the emergence of global regulators keeping all cellular systems under negative control. In summary, we demonstrate the value of biologically realistic computer evolution techniques, and the importance of energy and resource management in driving the topology and function of gene regulatory networks.

摘要

我们描述了使用人工基因调控网络进化的计算模型来理解生物基因调控网络的拓扑结构。我们总结了三种互补方法的结果,这些方法明确表示了转录、翻译、代谢和基因调控的生物学过程:允许详细分子相互作用的细粒度模型、允许许多代快速进化的粗粒度模型,以及允许比较不同假设的固定架构模型。在前两种情况下,我们能够朝着生存和繁殖的生物适应度目标进化网络。一个出现的主题是,细胞能量和资源的控制是基因网络拓扑和功能的主要驱动因素。这在细粒度模型中通过出现优化能量利用和细胞分裂时间的生物现实 mRNA 和蛋白质周转率以及基本抑制剂活性的进化得到证明;在固定架构模型中,通过需要包含基础基因表达来获得生物上合理的网络,以及出现的全局调节剂将所有细胞系统置于负控制下;在粗粒度模型中,通过需要包含基础基因表达来获得生物上合理的网络,以及出现的全局调节剂将所有细胞系统置于负控制下。总之,我们展示了生物现实计算机进化技术的价值,以及能量和资源管理在驱动基因调控网络的拓扑和功能方面的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验