Suppr超能文献

新型细菌形态的超微结构,位于体外和体内金黄色葡萄球菌导管相关生物膜中。

Ultrastructure of a novel bacterial form located in Staphylococcus aureus in vitro and in vivo catheter-associated biofilms.

机构信息

Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

J Histochem Cytochem. 2012 Oct;60(10):770-6. doi: 10.1369/0022155412457573. Epub 2012 Jul 21.

Abstract

Bacterial biofilms are ubiquitous in nature, industry, and medicine, and understanding their development and cellular structure is critical in controlling the unwanted consequences of biofilm growth. Here, we report the ultrastructure of a novel bacterial form observed by scanning electron microscopy in the luminal vegetations of catheters from patients with active Staphylococcus aureus bacteremia. This novel structure had the general appearance of a normal staphylococcal cell but up to 10 to 15 times as large. Transmission electron microscopy indicated that these structures appeared as sacs enclosing multiple normal-sized (~0.6 µm) staphylococcal forms. Using in vitro cultivated biofilms, cytochemical studies using fluorescent reagents revealed that these structures were rich in lipids and appeared within 15 min after S. aureus inoculation onto clinically relevant abiotic surfaces. Because they appeared early in biofilm development, these novel bacterial forms may represent an unappreciated mechanism for biofilm surface adherence, and their prominent lipid expression levels could explain the perplexing increased antimicrobial resistance of biofilm-associated bacteria.

摘要

细菌生物膜在自然界、工业和医学中无处不在,了解其发展和细胞结构对于控制生物膜生长的不良后果至关重要。在这里,我们通过扫描电子显微镜报告了在患有活动性金黄色葡萄球菌菌血症患者的导管内腔中的一种新型细菌形态的超微结构。这种新型结构通常具有正常葡萄球菌细胞的外观,但大小可达正常细胞的 10 到 15 倍。透射电子显微镜表明,这些结构表现为囊,其中包含多个正常大小(约 0.6 µm)的葡萄球菌形态。使用体外培养的生物膜,使用荧光试剂进行细胞化学研究表明,这些结构富含脂质,并在金黄色葡萄球菌接种到临床相关的非生物表面后 15 分钟内出现。由于它们出现在生物膜发展的早期,这些新型细菌形态可能代表了生物膜表面附着的一种未被充分认识的机制,其显著的脂质表达水平可以解释生物膜相关细菌令人费解的抗微生物药物耐药性增加的原因。

相似文献

1
Ultrastructure of a novel bacterial form located in Staphylococcus aureus in vitro and in vivo catheter-associated biofilms.
J Histochem Cytochem. 2012 Oct;60(10):770-6. doi: 10.1369/0022155412457573. Epub 2012 Jul 21.
2
Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo.
J Immunol. 2011 Jun 1;186(11):6585-96. doi: 10.4049/jimmunol.1002794. Epub 2011 Apr 27.
3
Gentamicin promotes Staphylococcus aureus biofilms on silk suture.
J Surg Res. 2011 Oct;170(2):302-8. doi: 10.1016/j.jss.2011.06.011. Epub 2011 Jul 7.
4
Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces.
Nephrol Dial Transplant. 2006 Aug;21(8):2247-55. doi: 10.1093/ndt/gfl170. Epub 2006 Apr 20.
6
Bacterial contamination of surgical suture resembles a biofilm.
Surg Infect (Larchmt). 2010 Oct;11(5):433-9. doi: 10.1089/sur.2010.006.
7
Effect of alkaline pH on staphylococcal biofilm formation.
APMIS. 2012 Sep;120(9):733-42. doi: 10.1111/j.1600-0463.2012.02900.x. Epub 2012 Apr 11.
9
Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance.
Antimicrob Agents Chemother. 2009 Sep;53(9):3914-22. doi: 10.1128/AAC.00657-09. Epub 2009 Jun 29.
10
Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces.
Antimicrob Agents Chemother. 2003 Nov;47(11):3407-14. doi: 10.1128/AAC.47.11.3407-3414.2003.

引用本文的文献

2
In Vitro Assessment on Designing Novel Antibiofilms of Using a Computational Approach.
Molecules. 2022 Dec 15;27(24):8935. doi: 10.3390/molecules27248935.
3
Sonochemical fabrication of gradient antibacterial materials based on Cu-Zn alloy.
Ultrason Sonochem. 2023 Jan;92:106247. doi: 10.1016/j.ultsonch.2022.106247. Epub 2022 Dec 5.
4
Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?
Microbiol Insights. 2016 Jan 18;8(Suppl 2):29-32. doi: 10.4137/MBI.S31444. eCollection 2015.
6
Antibacterial synergy of glycerol monolaurate and aminoglycosides in Staphylococcus aureus biofilms.
Antimicrob Agents Chemother. 2014 Nov;58(11):6970-3. doi: 10.1128/AAC.03672-14. Epub 2014 Sep 2.

本文引用的文献

1
Biofilms and infectious diseases: biology to mathematics and back again.
FEMS Microbiol Lett. 2011 Sep;322(1):1-7. doi: 10.1111/j.1574-6968.2011.02314.x. Epub 2011 Jun 16.
2
Impact of microbial attachment on intravascular catheter-related infections.
Int J Antimicrob Agents. 2011 Jul;38(1):9-15. doi: 10.1016/j.ijantimicag.2011.01.020. Epub 2011 Mar 23.
3
The biofilm matrix.
Nat Rev Microbiol. 2010 Sep;8(9):623-33. doi: 10.1038/nrmicro2415. Epub 2010 Aug 2.
4
Biofilms: an extra hurdle for effective antimicrobial therapy.
Curr Pharm Des. 2010;16(20):2279-95. doi: 10.2174/138161210791792868.
5
Prevention of central venous catheter bloodstream infections.
J Intensive Care Med. 2010 May-Jun;25(3):131-8. doi: 10.1177/0885066609358952. Epub 2010 Jan 19.
6
Controlling bacterial biofilms.
Chembiochem. 2009 Sep 21;10(14):2287-94. doi: 10.1002/cbic.200900317.
7
Evolving concepts in biofilm infections.
Cell Microbiol. 2009 Jul;11(7):1034-43. doi: 10.1111/j.1462-5822.2009.01323.x. Epub 2009 Apr 6.
8
The developmental model of microbial biofilms: ten years of a paradigm up for review.
Trends Microbiol. 2009 Feb;17(2):73-87. doi: 10.1016/j.tim.2008.11.001. Epub 2009 Jan 21.
9
The sociobiology of biofilms.
FEMS Microbiol Rev. 2009 Jan;33(1):206-24. doi: 10.1111/j.1574-6976.2008.00150.x. Epub 2008 Dec 3.
10
Physiological heterogeneity in biofilms.
Nat Rev Microbiol. 2008 Mar;6(3):199-210. doi: 10.1038/nrmicro1838.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验