Division of Cardiovascular and Neuronal Remodelling, LIGHT, Faculty of Medicine and Health, University of Leeds, Clarendon Way, Leeds, UK.
Am J Respir Crit Care Med. 2012 Oct 1;186(7):648-56. doi: 10.1164/rccm.201204-0688OC. Epub 2012 Jul 19.
Clinical reports describe life-threatening cardiac arrhythmias after environmental exposure to carbon monoxide (CO) or accidental CO poisoning. Numerous case studies describe disruption of repolarization and prolongation of the QT interval, yet the mechanisms underlying CO-induced arrhythmias are unknown.
To understand the cellular basis of CO-induced arrhythmias and to identify an effective therapeutic approach.
Patch-clamp electrophysiology and confocal Ca(2+) and nitric oxide (NO) imaging in isolated ventricular myocytes was performed together with protein S-nitrosylation to investigate the effects of CO at the cellular and molecular levels, whereas telemetry was used to investigate effects of CO on electrocardiogram recordings in vivo.
CO increased the sustained (late) component of the inward Na(+) current, resulting in prolongation of the action potential and the associated intracellular Ca(2+) transient. In more than 50% of myocytes these changes progressed to early after-depolarization-like arrhythmias. CO elevated NO levels in myocytes and caused S-nitrosylation of the Na(+) channel, Na(v)1.5. All proarrhythmic effects of CO were abolished by the NO synthase inhibitor l-NAME, and reversed by ranolazine, an inhibitor of the late Na(+) current. Ranolazine also corrected QT variability and arrhythmias induced by CO in vivo, as monitored by telemetry.
Our data indicate that the proarrhythmic effects of CO arise from activation of NO synthase, leading to NO-mediated nitrosylation of Na(V)1.5 and to induction of the late Na(+) current. We also show that the antianginal drug ranolazine can abolish CO-induced early after-depolarizations, highlighting a novel approach to the treatment of CO-induced arrhythmias.
临床报告描述了环境暴露于一氧化碳(CO)或意外 CO 中毒后危及生命的心律失常。许多病例研究描述了复极化的中断和 QT 间期的延长,但 CO 引起的心律失常的机制尚不清楚。
了解 CO 引起心律失常的细胞基础,并确定有效的治疗方法。
采用膜片钳电生理学和共聚焦 Ca(2+)和一氧化氮(NO)成像技术,以及蛋白质 S-亚硝基化,在分离的心室肌细胞中进行研究,以研究 CO 在细胞和分子水平上的作用,而遥测则用于研究 CO 对体内心电图记录的影响。
CO 增加了内向 Na(+)电流的持续(晚期)成分,导致动作电位和相关的细胞内 Ca(2+)瞬变延长。在超过 50%的心肌细胞中,这些变化进展为早期后除极样心律失常。CO 增加了心肌细胞中的 NO 水平,并导致 Na(+)通道,Na(v)1.5 的 S-亚硝基化。CO 的所有致心律失常作用都被一氧化氮合酶抑制剂 l-NAME 消除,并用晚期 Na(+)电流抑制剂雷诺嗪逆转。雷诺嗪还通过遥测校正了 CO 在体内引起的 QT 变异性和心律失常。
我们的数据表明,CO 的致心律失常作用来自于一氧化氮合酶的激活,导致 NO 介导的 Na(v)1.5 亚硝基化和晚期 Na(+)电流的诱导。我们还表明,抗心绞痛药物雷诺嗪可以消除 CO 引起的早期后除极,突出了一种治疗 CO 引起的心律失常的新方法。