Knürr Timo, Läärä Esa, Sillanpää Mikko J
Department of Mathematics and Statistics, P.O. Box 68, FIN-00014 University of Helsinki, Finland.
Genet Res (Camb). 2011 Aug;93(4):303-18. doi: 10.1017/S0016672311000164. Epub 2011 Jul 18.
A new estimation-based Bayesian variable selection approach is presented for genetic analysis of complex traits based on linear or logistic regression. By assigning a mixture of uniform priors (MU) to genetic effects, the approach provides an intuitive way of specifying hyperparameters controlling the selection of multiple influential loci. It aims at avoiding the difficulty of interpreting assumptions made in the specifications of priors. The method is compared in two real datasets with two other approaches, stochastic search variable selection (SSVS) and a re-formulation of Bayes B utilizing indicator variables and adaptive Student's t-distributions (IAt). The Markov Chain Monte Carlo (MCMC) sampling performance of the three methods is evaluated using the publicly available software OpenBUGS (model scripts are provided in the Supplementary material). The sensitivity of MU to the specification of hyperparameters is assessed in one of the data examples.
提出了一种基于估计的新型贝叶斯变量选择方法,用于基于线性或逻辑回归的复杂性状遗传分析。通过为遗传效应分配均匀先验混合(MU),该方法提供了一种直观的方式来指定控制多个影响位点选择的超参数。其目的是避免在先验规范中解释假设的困难。该方法在两个真实数据集上与其他两种方法进行了比较,即随机搜索变量选择(SSVS)以及利用指示变量和自适应学生t分布(IAt)对贝叶斯B进行的重新表述。使用公开可用的软件OpenBUGS评估了这三种方法的马尔可夫链蒙特卡罗(MCMC)采样性能(补充材料中提供了模型脚本)。在其中一个数据示例中评估了MU对超参数规范的敏感性。