Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17826-31. doi: 10.1073/pnas.1201802109. Epub 2012 Jul 23.
Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.
蛋白质的结构和功能取决于固有折叠能量景观和蛋白质环境化学之间的紧密相互作用。渗透剂是小分子化合物,可通过改变细胞环境来充当化学伴侣。尽管它们很重要,但关于这些化学伴侣在调节结构和无规卷曲蛋白质的尺寸方面的作用的详细研究还很有限。在这里,我们使用单分子Förster 共振能量转移来测试保护渗透剂三甲胺 N-氧化物(TMAO)和变性渗透剂尿素之间平衡作用的反作用假说,对于帕金森病相关蛋白α-突触核蛋白,其单体表现出显著的无序。单分子实验避免了蛋白质聚集的复杂性,与以前对球状蛋白的研究结果不同,这些渗透剂没有显示出明显的溶剂诱导的蛋白质协同转变。我们的数据表明,TMAO 和尿素能够将α-突触核蛋白的结构向更紧凑或扩展的平均尺寸转变。引人注目的是,实验直接揭示了 21 [尿素][TMAO]的比率对蛋白质尺寸具有净中性影响,无论绝对渗透剂浓度如何,结果都是如此。我们的发现揭示了在无规卷曲蛋白背景下,尿素和 TMAO 对α-突触核蛋白相互作用的一个惊人简单的方面,这可能对这种化学伴侣的生物学作用具有重要意义。该结果还突出了单分子实验在更复杂化学环境中直接探测蛋白质结构和无序的化学物理性质的优势。