Suppr超能文献

人体纺锤体中的拮抗运动提供了机械和功能上的稳健性。

Opposing motors provide mechanical and functional robustness in the human spindle.

机构信息

Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA; Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA 94143, USA.

Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA; Tetrad Graduate Program, UCSF, San Francisco, CA 94158, USA.

出版信息

Dev Cell. 2021 Nov 8;56(21):3006-3018.e5. doi: 10.1016/j.devcel.2021.09.011. Epub 2021 Oct 5.

Abstract

At each cell division, the spindle self-organizes from microtubules and motors. In human spindles, the motors dynein and Eg5 generate contractile and extensile stress, respectively. Inhibiting dynein or its targeting factor NuMA leads to unfocused, turbulent spindles, and inhibiting Eg5 leads to monopoles; yet, bipolar spindles form when both are inhibited together. What, then, are the roles of these opposing motors? Here, we generate NuMA/dynein- and Eg5-doubly inhibited spindles that not only attain a typical metaphase shape and size but also undergo anaphase. However, these spindles have reduced microtubule dynamics and are mechanically fragile, fracturing under force. Furthermore, they exhibit lagging chromosomes and a dramatic left-handed twist at anaphase. Thus, although these opposing motors are not required for spindle shape, they are essential to its mechanical and functional robustness. This work suggests a design principle whereby opposing active stresses provide robustness to force-generating cellular structures.

摘要

在每个细胞分裂过程中,纺锤体自组装形成微管和马达。在人类纺锤体中,马达 dynein 和 Eg5 分别产生收缩力和延伸力。抑制 dynein 或其靶向因子 NuMA 会导致纺锤体失去焦点、不稳定,而抑制 Eg5 会导致单极体;然而,当两者同时被抑制时,会形成双极纺锤体。那么,这些相反的马达的作用是什么呢?在这里,我们生成了 NuMA/dynein 和 Eg5 双重抑制的纺锤体,这些纺锤体不仅具有典型的中期形状和大小,而且还能进行后期。然而,这些纺锤体的微管动力学降低,机械脆弱,在受力下会断裂。此外,它们在后期表现出滞后染色体和明显的左手扭曲。因此,尽管这些相反的马达不是纺锤体形状所必需的,但它们对于纺锤体的机械和功能稳健性是必不可少的。这项工作提出了一个设计原则,即相反的主动应力为产生力的细胞结构提供稳健性。

相似文献

3
Microtubule End-Clustering Maintains a Steady-State Spindle Shape.微管末端聚集维持稳定的纺锤体形状。
Curr Biol. 2019 Feb 18;29(4):700-708.e5. doi: 10.1016/j.cub.2019.01.016. Epub 2019 Feb 7.

引用本文的文献

5
Microtubule choreography: spindle self-organization during cell division.微管编排:细胞分裂过程中的纺锤体自我组织
Biophys Rev. 2024 Sep 30;16(5):613-624. doi: 10.1007/s12551-024-01236-z. eCollection 2024 Oct.

本文引用的文献

8
Microtubule End-Clustering Maintains a Steady-State Spindle Shape.微管末端聚集维持稳定的纺锤体形状。
Curr Biol. 2019 Feb 18;29(4):700-708.e5. doi: 10.1016/j.cub.2019.01.016. Epub 2019 Feb 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验