The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
ACS Nano. 2012 Aug 28;6(8):7026-33. doi: 10.1021/nn3020757. Epub 2012 Aug 2.
Nanoscale electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO(2) and SrTiO(3) thin films are observed using scanning probe microscopy. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Landau-Ginzburg-Devonshire (LGD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order LGD expansion coefficient, rendering material effectively ferroelectric. The lifetime of these ionically induced ferroelectric states is then controlled by the transport time of the mobile ionic species and well above that of polarization switching. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides.
使用扫描探针显微镜观察了弛豫铁电体 TiO2 和 SrTiO3 薄膜中的纳米级机电活动、剩余极化状态和滞后回线。采用扩展朗道-金兹堡-德文希尔(LGD)理论分析了这些材料中离子动力学和初生铁电性之间的耦合。确定了机电耦合的可能起源,包括离子动力学、表面电荷诱导的电致伸缩和离子诱导的铁电性。对于后者,离子贡献可以改变一阶 LGD 展开系数的符号,使材料具有有效铁电性。这些离子诱导铁电态的寿命随后由可移动离子物种的输运时间控制,远高于极化翻转时间。这些研究为中心对称过渡金属氧化物中类似铁电性的行为提供了可能的解释。