Suppr超能文献

使用形态波形特征减少颅内压假警报。

Reducing false intracranial pressure alarms using morphological waveform features.

机构信息

Department of Neurology and Neurosurgery, University of California, Los Angeles, CA 90024, USA.

出版信息

IEEE Trans Biomed Eng. 2013 Jan;60(1):235-9. doi: 10.1109/TBME.2012.2210042. Epub 2012 Jul 24.

Abstract

False alarms produced by patient monitoring systems in intensive care units are a major issue that causes alarm fatigue, waste of human resources, and increased patient risks. While alarms are typically triggered by manually adjusted thresholds, the trend and patterns observed prior to threshold crossing are generally not used by current systems. This study introduces and evaluates, a smart alarm detection system for intracranial pressure signal (ICP) that is based on advanced pattern recognition methods. Models are trained in a supervised fashion from a comprehensive dataset of 4791 manually labeled alarm episodes extracted from 108 neurosurgical patients. The comparative analysis provided between spectral regression, kernel spectral regression, and support vector machines indicates the significant improvement of the proposed framework in detecting false ICP alarms in comparison to a threshold-based technique that is conventionally used. Another contribution of this work is to exploit an adaptive discretization to reduce the dimensionality of the input features. The resulting features lead to a decrease of 30% of false ICP alarms without compromising sensitivity.

摘要

重症监护病房患者监护系统产生的误报警是一个主要问题,它会导致报警疲劳、浪费人力资源和增加患者风险。虽然报警通常是由手动调整的阈值触发的,但当前系统通常不使用阈值交叉之前观察到的趋势和模式。本研究提出并评估了一种基于先进模式识别方法的颅内压信号 (ICP) 智能报警检测系统。该模型是从从 108 名神经外科患者中提取的 4791 个手动标记报警事件的综合数据集以监督方式进行训练的。与传统使用的基于阈值的技术相比,对光谱回归、核光谱回归和支持向量机进行的比较分析表明,所提出的框架在检测假 ICP 报警方面有显著的改进。这项工作的另一个贡献是利用自适应离散化来降低输入特征的维度。所得到的特征可减少 30%的假 ICP 报警,而不会降低灵敏度。

相似文献

1
Reducing false intracranial pressure alarms using morphological waveform features.使用形态波形特征减少颅内压假警报。
IEEE Trans Biomed Eng. 2013 Jan;60(1):235-9. doi: 10.1109/TBME.2012.2210042. Epub 2012 Jul 24.
6
Signal quality and data fusion for false alarm reduction in the intensive care unit.用于重症监护病房减少误报的信号质量与数据融合
J Electrocardiol. 2012 Nov-Dec;45(6):596-603. doi: 10.1016/j.jelectrocard.2012.07.015. Epub 2012 Sep 7.
10
Sensor fusion methods for reducing false alarms in heart rate monitoring.用于减少心率监测中误报的传感器融合方法。
J Clin Monit Comput. 2016 Dec;30(6):859-867. doi: 10.1007/s10877-015-9786-4. Epub 2015 Oct 6.

引用本文的文献

3
On the bias in the AUC variance estimate.关于AUC方差估计中的偏差。
Pattern Recognit Lett. 2024 Feb;178:62-68. doi: 10.1016/j.patrec.2023.12.012. Epub 2023 Dec 27.
10
Detection of Intracranial Hypertension using Deep Learning.利用深度学习检测颅内高压
Proc IAPR Int Conf Pattern Recogn. 2016 Dec;2016:2491-2496. doi: 10.1109/ICPR.2016.7900010. Epub 2017 Apr 24.

本文引用的文献

1
Intracranial hypertension prediction using extremely randomized decision trees.使用极端随机树预测颅内压升高。
Med Eng Phys. 2012 Oct;34(8):1058-65. doi: 10.1016/j.medengphy.2011.11.010. Epub 2012 Mar 7.
2
Bayesian tracking of intracranial pressure signal morphology.贝叶斯跟踪颅内压信号形态。
Artif Intell Med. 2012 Feb;54(2):115-23. doi: 10.1016/j.artmed.2011.08.007. Epub 2011 Oct 2.
4
Intensive care unit alarms--how many do we need?重症监护病房警报——我们需要多少个?
Crit Care Med. 2010 Feb;38(2):451-6. doi: 10.1097/CCM.0b013e3181cb0888.
5
Morphological clustering and analysis of continuous intracranial pressure.连续颅内压的形态学聚类与分析
IEEE Trans Biomed Eng. 2009 Mar;56(3):696-705. doi: 10.1109/TBME.2008.2008636. Epub 2008 Nov 7.
7
Intelligent alarm processing into clinical knowledge.将智能警报处理转化为临床知识。
Conf Proc IEEE Eng Med Biol Soc. 2006;Suppl:6657-9. doi: 10.1109/IEMBS.2006.260913.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验