Suppr超能文献

量子点是否有毒?探究细胞培养与动物研究之间的差异。

Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies.

机构信息

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada.

出版信息

Acc Chem Res. 2013 Mar 19;46(3):662-71. doi: 10.1021/ar300040z. Epub 2012 Aug 1.

Abstract

Despite significant interest in developing quantum dots (QDs) for biomedical applications, many researchers are convinced that QDs will never be used for treating patients because of their potential toxicity. The perception that QDs are toxic is rooted in two assumptions. Cadmium-containing QDs can kill cells in culture. Many researchers then assume that because QDs are toxic to cells, they must be toxic to humans. In addition, many researchers classify QDs as a homogeneous group of materials. Therefore, if CdSe QDs are harmful, they extrapolate this result to all QDs. Though unsubstantiated, these assumptions continue to drive QD research. When dosing is physiologically appropriate, QD toxicity has not been demonstrated in animal models. In addition, QDs are not uniform: each design is a unique combination of physicochemical properties that influence biological activity and toxicity. In this Account, we summarize key findings from in vitro and in vivo studies, explore the causes of the discrepancy in QD toxicological data, and provide our view of the future direction of the field. In vitro and in vivo QD studies have advanced our knowledge of cellular transport kinetics, mechanisms of QD toxicity, and biodistribution following animal injection. Cell culture experiments have shown that QDs undergo design-dependent intracellular localization and they can cause cytotoxicity by releasing free cadmium into solution and by generating free radical species. In animal experiments, QDs preferentially enter the liver and spleen following intravascular injection, undergo minimal excretion if larger than 6 nm, and appear to be safe to the animal. In vitro and in vivo studies show an apparent discrepancy with regard to toxicity. Dosing provides one explanation for these findings. Under culture conditions, a cell experiences a constant QD dose, but the in vivo QD concentration can vary, and the organ-specific dose may not be high enough to induce detectable toxicity. Because QDs are retained within animals, long-term toxicity may be a problem but has not been established. Future QD toxicity studies should be standardized and systematized because methodological variability in the current body of literature makes it difficult to compare and contrast results. We advocate the following steps for consistent, comparable toxicology data: (a) standardize dose metrics, (b) characterize QD uptake concentration, (c) identify in vitro models that reflect the cells QDs interact with in vivo, and (d) use multiple assays to determine sublethal toxicity and biocompatibility. Finally, we should ask more specific toxicological questions. For example: "At what dose are 5 nm CdSe QDs that are stabilized with mercaptoacetic acid and conjugated to the antibody herceptin toxic to HeLa cells?" rather than "Are QDs toxic?" QDs are still a long way from realizing their potential as a medical technology. Modifying the current QD toxicological research paradigm, investigating toxicity in a case-by-case manner, and improving study quality are important steps in identifying a QD formulation that is safe for human use.

摘要

尽管人们对开发用于生物医学应用的量子点(QD)非常感兴趣,但许多研究人员确信,由于其潜在的毒性,QD 永远不会用于治疗患者。人们认为 QD 具有毒性的原因有两个。含镉的 QD 可以杀死培养中的细胞。许多研究人员因此假设,由于 QD 对细胞有毒,它们对人类也一定有毒。此外,许多研究人员将 QD 归类为均质材料组。因此,如果 CdSe QD 有害,他们就会推断出所有 QD 都是有害的。尽管这些假设没有得到证实,但它们仍在继续推动 QD 研究。当剂量在生理上合适时,在动物模型中并未显示出 QD 的毒性。此外,QD 并不均匀:每个设计都是一组独特的物理化学性质的组合,这些性质会影响生物活性和毒性。在本报告中,我们总结了体外和体内研究的关键发现,探讨了 QD 毒理学数据差异的原因,并提供了我们对该领域未来方向的看法。体外和体内 QD 研究提高了我们对细胞转运动力学、QD 毒性机制以及动物注射后生物分布的认识。细胞培养实验表明,QD 经历了依赖于设计的细胞内定位,并且可以通过将游离镉释放到溶液中以及通过产生自由基来引起细胞毒性。在动物实验中,QD 在血管内注射后优先进入肝脏和脾脏,大于 6nm 则很少排泄,并且对动物似乎是安全的。体外和体内研究在毒性方面显示出明显的差异。剂量为这些发现提供了一种解释。在培养条件下,细胞经历恒定的 QD 剂量,但是体内 QD 浓度可能会变化,并且器官特异性剂量可能不足以引起可检测的毒性。由于 QD 被保留在动物体内,因此长期毒性可能是一个问题,但尚未得到证实。未来的 QD 毒性研究应标准化和系统化,因为当前文献中方法学的可变性使得比较和对比结果变得困难。我们提倡采取以下步骤来获得一致,可比的毒理学数据:(a)标准化剂量指标,(b)表征 QD 摄取浓度,(c)鉴定反映 QD 与体内细胞相互作用的体外模型,以及(d)使用多种测定方法来确定亚致死毒性和生物相容性。最后,我们应该提出更具体的毒理学问题。例如:“用巯基乙酸稳定并与抗体赫赛汀偶联的 5nm CdSe QD 的剂量是多少,对 HeLa 细胞有毒?”而不是“QD 是否有毒?”QD 要实现其作为医疗技术的潜力还有很长的路要走。改变当前的 QD 毒理学研究范例,逐案进行毒性研究,并提高研究质量,是确定对人体安全的 QD 配方的重要步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验