Suppr超能文献

工程化蓝藻细胞工厂用于生产乳酸。

Engineering a cyanobacterial cell factory for production of lactic acid.

机构信息

Swammerdam Institute for Life Sciences and Netherlands Institute for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Appl Environ Microbiol. 2012 Oct;78(19):7098-106. doi: 10.1128/AEM.01587-12. Epub 2012 Aug 3.

Abstract

Metabolic engineering of microorganisms has become a versatile tool to facilitate production of bulk chemicals, fuels, etc. Accordingly, CO(2) has been exploited via cyanobacterial metabolism as a sustainable carbon source of biofuel and bioplastic precursors. Here we extended these observations by showing that integration of an ldh gene from Bacillus subtilis (encoding an l-lactate dehydrogenase) into the genome of Synechocystis sp. strain PCC6803 leads to l-lactic acid production, a phenotype which is shown to be stable for prolonged batch culturing. Coexpression of a heterologous soluble transhydrogenase leads to an even higher lactate production rate and yield (lactic acid accumulating up to a several-millimolar concentration in the extracellular medium) than those for the single ldh mutant. The expression of a transhydrogenase alone, however, appears to be harmful to the cells, and a mutant carrying such a gene is rapidly outcompeted by a revertant(s) with a wild-type growth phenotype. Furthermore, our results indicate that the introduction of a lactate dehydrogenase rescues this phenotype by preventing the reversion.

摘要

微生物代谢工程已成为促进大宗化学品、燃料等生产的通用工具。因此,通过蓝藻代谢利用 CO(2) 作为生物燃料和生物塑料前体的可持续碳源。在这里,我们通过展示将枯草芽孢杆菌 (编码 l-乳酸脱氢酶) 的 ldh 基因整合到集胞藻 PCC6803 菌株的基因组中,可以生产 l-乳酸,这一表型在长时间的分批培养中是稳定的,从而扩展了这些观察结果。共表达一种异源可溶性氢转移酶可导致更高的乳酸产率和产量(在细胞外培养基中积累高达几毫摩尔浓度的乳酸),比单 ldh 突变体更高。然而,单独表达氢转移酶似乎对细胞有害,携带该基因的突变体很快被具有野生型生长表型的回复突变体所淘汰。此外,我们的结果表明,引入乳酸脱氢酶可以通过防止回复来挽救这种表型。

相似文献

1
Engineering a cyanobacterial cell factory for production of lactic acid.工程化蓝藻细胞工厂用于生产乳酸。
Appl Environ Microbiol. 2012 Oct;78(19):7098-106. doi: 10.1128/AEM.01587-12. Epub 2012 Aug 3.
5
Metabolic engineering of Bacillus subtilis for production of D-lactic acid.枯草芽孢杆菌生产 D-乳酸的代谢工程。
Biotechnol Bioeng. 2018 Feb;115(2):453-463. doi: 10.1002/bit.26472. Epub 2017 Oct 30.

引用本文的文献

4
Cyanobacteria as cell factories for the photosynthetic production of sucrose.蓝细菌作为用于光合生产蔗糖的细胞工厂。
Front Microbiol. 2023 Feb 14;14:1126032. doi: 10.3389/fmicb.2023.1126032. eCollection 2023.

本文引用的文献

1
ATP drives direct photosynthetic production of 1-butanol in cyanobacteria.ATP 驱动蓝细菌中 1-丁醇的直接光合生产。
Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6018-23. doi: 10.1073/pnas.1200074109. Epub 2012 Apr 2.
3
Rerouting carbon flux to enhance photosynthetic productivity.重新分配碳通量以提高光合作用生产力。
Appl Environ Microbiol. 2012 Apr;78(8):2660-8. doi: 10.1128/AEM.07901-11. Epub 2012 Feb 3.
4
Ploidy in cyanobacteria.蓝藻中的倍性。
FEMS Microbiol Lett. 2011 Oct;323(2):124-31. doi: 10.1111/j.1574-6968.2011.02368.x. Epub 2011 Sep 6.
9
BRENDA, the enzyme information system in 2011.布伦达,2011年的酶信息系统。
Nucleic Acids Res. 2011 Jan;39(Database issue):D670-6. doi: 10.1093/nar/gkq1089. Epub 2010 Nov 9.
10
Engineering cyanobacteria to synthesize and export hydrophilic products.工程化蓝细菌合成并输出亲水产物。
Appl Environ Microbiol. 2010 Jun;76(11):3462-6. doi: 10.1128/AEM.00202-10. Epub 2010 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验