Department of Computer Science, University College London, London, United Kingdom.
IEEE Trans Pattern Anal Mach Intell. 2013 May;35(5):1107-20. doi: 10.1109/TPAMI.2012.171.
We present a supervised learning-based method to estimate a per-pixel confidence for optical flow vectors. Regions of low texture and pixels close to occlusion boundaries are known to be difficult for optical flow algorithms. Using a spatiotemporal feature vector, we estimate if a flow algorithm is likely to fail in a given region. Our method is not restricted to any specific class of flow algorithm and does not make any scene specific assumptions. By automatically learning this confidence, we can combine the output of several computed flow fields from different algorithms to select the best performing algorithm per pixel. Our optical flow confidence measure allows one to achieve better overall results by discarding the most troublesome pixels. We illustrate the effectiveness of our method on four different optical flow algorithms over a variety of real and synthetic sequences. For algorithm selection, we achieve the top overall results on a large test set, and at times even surpass the results of the best algorithm among the candidates.
我们提出了一种基于监督学习的方法来估计光流向量的逐像素置信度。众所周知,低纹理区域和接近遮挡边界的像素对光流算法来说是困难的。使用时空特征向量,我们估计给定区域中光流算法是否可能失败。我们的方法不受任何特定类别的光流算法的限制,也不做任何特定于场景的假设。通过自动学习这种置信度,我们可以组合来自不同算法的多个计算光流场的输出,以选择每个像素表现最佳的算法。我们的光流置信度度量方法允许通过丢弃最麻烦的像素来获得更好的整体结果。我们在各种真实和合成序列上对四种不同的光流算法进行了实验,证明了我们方法的有效性。对于算法选择,我们在一个大型测试集上取得了总体最佳成绩,有时甚至超过了候选算法中最佳算法的成绩。