Suppr超能文献

麻疹病毒 RNA 的持续存在是原发性感染动力学的特征。

Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics.

机构信息

W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14989-94. doi: 10.1073/pnas.1211138109. Epub 2012 Aug 7.

Abstract

Measles virus (MeV) is the poster child for acute infection followed by lifelong immunity. However, recent work shows the presence of MeV RNA in multiple sites for up to 3 mo after infection in a proportion of infected children. Here, we use experimental infection of rhesus macaques to show that prolonged RNA presence is characteristic of primary infection. We found that viral RNA persisted in the blood, respiratory tract, or lymph nodes four to five times longer than the infectious virus and that the clearance of MeV RNA from blood happened in three phases: rapid decline coincident with clearance of infectious virus, a rebound phase with increases up to 10-fold, and a phase of slow decrease to undetectable levels. To examine the effect of individual host immune factors on MeV load dynamics further, we developed a mathematical model that expressed viral replication and elimination in terms of the strength of MeV-specific T-cell responses, antibody responses, target cell limitations, and immunosuppressive activity of regulatory T cells. Based on the model, we demonstrate that viral dynamics, although initially regulated by T cells, require antibody to eliminate viral RNA. These results have profound consequences for our view of acute viral infections, the development of prolonged immunity, and, potentially, viral evolution.

摘要

麻疹病毒(MeV)是急性感染后终身免疫的典型代表。然而,最近的研究工作表明,在感染后的一段时间内,相当一部分感染儿童的多个部位都存在 MeV RNA。在这里,我们使用恒河猴的实验感染来表明,RNA 的持续存在是原发性感染的特征。我们发现,病毒 RNA 在血液、呼吸道或淋巴结中的持续时间比感染性病毒长四倍到五倍,而 MeV RNA 从血液中的清除分三个阶段进行:与清除感染性病毒同时发生的快速下降、高达 10 倍的反弹阶段,以及缓慢下降至无法检测水平的阶段。为了进一步研究个体宿主免疫因素对 MeV 负荷动力学的影响,我们开发了一个数学模型,该模型将病毒复制和消除表达为 MeV 特异性 T 细胞反应、抗体反应、靶细胞限制和调节性 T 细胞免疫抑制活性的强度。基于该模型,我们证明了病毒动力学虽然最初受 T 细胞调节,但需要抗体来消除病毒 RNA。这些结果对我们对急性病毒感染、长期免疫的发展以及潜在的病毒进化的看法产生了深远的影响。

相似文献

1
Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14989-94. doi: 10.1073/pnas.1211138109. Epub 2012 Aug 7.
3
Evolution of T Cell Responses during Measles Virus Infection and RNA Clearance.
Sci Rep. 2017 Sep 13;7(1):11474. doi: 10.1038/s41598-017-10965-z.
5
Measles virus persistence and its consequences.
Curr Opin Virol. 2020 Apr;41:46-51. doi: 10.1016/j.coviro.2020.03.003. Epub 2020 May 5.
6
Measles immunometrics.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14724-5. doi: 10.1073/pnas.1212243109. Epub 2012 Aug 30.
7
Measles virus, immune control, and persistence.
FEMS Microbiol Rev. 2012 May;36(3):649-62. doi: 10.1111/j.1574-6976.2012.00330.x. Epub 2012 Mar 13.
8
Role of CD8(+) lymphocytes in control and clearance of measles virus infection of rhesus monkeys.
J Virol. 2003 Apr;77(7):4396-400. doi: 10.1128/jvi.77.7.4396-4400.2003.
9
Association of persistent wild-type measles virus RNA with long-term humoral immunity in rhesus macaques.
JCI Insight. 2020 Feb 13;5(3):134992. doi: 10.1172/jci.insight.134992.
10
Immunological landscape of human lymphoid explants during measles virus infection.
JCI Insight. 2024 Jul 25;9(17):e172261. doi: 10.1172/jci.insight.172261.

引用本文的文献

1
Pathological Alterations in Human Blood Microbiome-An Updated Review.
Int J Mol Sci. 2025 Jun 17;26(12):5807. doi: 10.3390/ijms26125807.
2
Environmental stress drives clearance of a persistent enteric virus in mice.
Nat Microbiol. 2025 Jun 25. doi: 10.1038/s41564-025-02046-z.
3
Sphingosine-1-phosphate signaling mediates shedding of measles virus-infected respiratory epithelial cells.
J Virol. 2025 Apr 15;99(4):e0188024. doi: 10.1128/jvi.01880-24. Epub 2025 Mar 27.
4
What's going on with measles?
J Virol. 2024 Aug 20;98(8):e0075824. doi: 10.1128/jvi.00758-24. Epub 2024 Jul 23.
5
Measles Infection Dose Responses: Insights from Mathematical Modeling.
Bull Math Biol. 2024 Jun 9;86(7):85. doi: 10.1007/s11538-024-01305-0.
6
Characterizing infection of B cells with wild-type and vaccine strains of measles virus.
iScience. 2023 Aug 25;26(10):107721. doi: 10.1016/j.isci.2023.107721. eCollection 2023 Oct 20.
9
Morphology of blood microbiota in healthy individuals assessed by light and electron microscopy.
Front Cell Infect Microbiol. 2023 Jan 18;12:1091341. doi: 10.3389/fcimb.2022.1091341. eCollection 2022.
10
Respiratory viruses: New frontiers-a Keystone Symposia report.
Ann N Y Acad Sci. 2023 Apr;1522(1):60-73. doi: 10.1111/nyas.14958. Epub 2023 Feb 1.

本文引用的文献

2
Assessment of the 2010 global measles mortality reduction goal: results from a model of surveillance data.
Lancet. 2012 Jun 9;379(9832):2173-8. doi: 10.1016/S0140-6736(12)60522-4. Epub 2012 Apr 24.
3
Measles virus, immune control, and persistence.
FEMS Microbiol Rev. 2012 May;36(3):649-62. doi: 10.1111/j.1574-6976.2012.00330.x. Epub 2012 Mar 13.
4
Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA.
Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11223-8. doi: 10.1073/pnas.1101939108. Epub 2011 Jun 20.
5
Regulatory T cells: history and perspective.
Methods Mol Biol. 2011;707:3-17. doi: 10.1007/978-1-61737-979-6_1.
7
Opposing positive and negative regulation of T cell activity during viral persistence.
Curr Opin Immunol. 2010 Jun;22(3):348-54. doi: 10.1016/j.coi.2010.03.004. Epub 2010 Apr 8.
8
Measles virus-induced immunosuppression in SLAM knock-in mice.
J Virol. 2010 May;84(10):5360-7. doi: 10.1128/JVI.02525-09. Epub 2010 Mar 3.
10
Dynamics of influenza virus infection and pathology.
J Virol. 2010 Apr;84(8):3974-83. doi: 10.1128/JVI.02078-09. Epub 2010 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验